Complexation of Glycine by Atomic Metal Cations in the Gas Phase

2001 ◽  
Vol 7 (4-5) ◽  
pp. 303-311 ◽  
Author(s):  
Sophie Hoyau ◽  
Jean-Pierre Pélicier ◽  
Françoise Rogalewicz ◽  
Yannik Hoppilliard ◽  
Gilles Ohanessian

The interaction of glycine with 15 metal cations (M+ or M2+)in the gas phase has been studied by quantum chemical calculations. Three types of complexation have been considered: (i)chelation between nitrogen and the carbonyl oxygen, (ii)attachment to the carboxyl group of neutral glycine and (iii)attachment to the carboxylate group of zwitterionic glycine. It is found that the relative energies of these structures and, therefore, the nature of the lowest energy isomer, depend dramatically upon the metal ion. In several cases, metal ion attachment to glycine results in a switch from the neutral form (the most stable form of gaseous glycine)to the zwitterion (the most stable form of glycine in solution). This occurs with doubly-charged cations and, in some cases, with monocations. Several metal properties are invoked to explain these results: metal charge, size, electron affinity and polarizability. The role of metal–ion polarizability is illustrated by the computed geometries of M(CH3OH)2n+ complexes.

2016 ◽  
Vol 94 (5) ◽  
pp. 501-508 ◽  
Author(s):  
Behzad Khalili ◽  
Mehdi Rimaz

The gas and aqueous phase complexation geometries, electronic interactions, and metal ion affinities of Zn2+, Cd2+, and Hg2+ metal cations with the two most stable conformations of l-proline complexes were studied. The complexes were optimized by density functional theory (B3LYP) using the 6-311++G(d,p) orbital basis set and relativistic pseudopotentials for the metal cations. The interactions of the metal cations at different nucleophilic sites of l-proline were considered as were three modes of interactions including salt bridged, charge solvated 1, and charge solvated 2, which are indicative of binding in a bidentate manner through the carboxylate group, carbonyl and hydroxyl oxygen, and carbonyl oxygen and the nitrogen atom of l-proline. All of the coordination patterns were characterized by both charge transfer and ionic interactions between l-proline and the metal cation. The metal ion affinity (MIA) and interaction energy were also computed for all of the complexes at both the gas and aqueous phases. Results showed that the order of MIA at the gas and aqueous phases are different. MIA order at the gas phase was in the order of Zn2+ > Hg2+ > Cd2+ whereas at the aqueous phase, the order of Zn2+ > Cd2+ > Hg2+ was obtained for MIA. The infrared stretching vibrational modes of the N–H and O–H groups of free l-proline were compared with l-proline–M2+ in both CS1 and CS2 coordination patterns at the gas phase and results showed a considerable shift to lower frequency during complexation process.


2010 ◽  
Vol 88 (8) ◽  
pp. 759-768 ◽  
Author(s):  
Al Mokhtar Lamsabhi ◽  
Otilia Mó ◽  
Manuel Yáñez

The association of Ca2+ and Cu2+ to serine was investigated by means of B3LYP DFT calculations. The [serine–M]2+ (M = Ca, Cu) potential energy surfaces include, as does the neutral serine, a large number of conformers, in which a drastic reorganization of the electron density of the serine moiety is observed. This leads to significant changes in the number and strength of the intramolecular hydrogen bonds existing in the neutral serine tautomers. In some cases, a proton is transferred from the carboxylic OH group to the amino group and accordingly, some of the more stable [serine–M]2+ complexes can be viewed as the result of the interaction of the zwiterionic form of serine with the doubly charged metal ion. Whereas the interaction between Ca2+ and serine is essentially electrostatic, that between Cu2+ and serine has a non-negligible covalent character, reflected in larger electron densities at the bond critical points between the metal and the base, in the negative values of the electron density between the two interacting systems, and in much larger Cu2+ than Ca2+ binding energies. More importantly, the interaction with Cu2+ is followed by a partial oxidation of the base, which is not observed when the metal ion is Ca2+. The main consequence is that in Cu2+ complexes a significant acidity enhancement of the serine moiety takes place, which strongly favors the deprotonation of the [serine–Cu]2+ complexes. This is not the case for Ca2+ complexes. Thus, [serine–Ca]2+ complexes, like those formed by urea, thiourea, selenourea, or glycine, should be detected in the gas phase. Conversely, the complexes with Cu2+ should deprotonate spontaneously and therefore only [(serine–H)–Cu]+ monocations should be experimentally accessible.


2004 ◽  
Vol 126 (10) ◽  
pp. 3034-3035 ◽  
Author(s):  
Yingying Huang ◽  
Joseph M. Triscari ◽  
Ljiljana Pasa-Tolic ◽  
Gordon A. Anderson ◽  
Mary S. Lipton ◽  
...  

2020 ◽  
Vol 500 (3) ◽  
pp. 3414-3424
Author(s):  
Alec Paulive ◽  
Christopher N Shingledecker ◽  
Eric Herbst

ABSTRACT Complex organic molecules (COMs) have been detected in a variety of interstellar sources. The abundances of these COMs in warming sources can be explained by syntheses linked to increasing temperatures and densities, allowing quasi-thermal chemical reactions to occur rapidly enough to produce observable amounts of COMs, both in the gas phase, and upon dust grain ice mantles. The COMs produced on grains then become gaseous as the temperature increases sufficiently to allow their thermal desorption. The recent observation of gaseous COMs in cold sources has not been fully explained by these gas-phase and dust grain production routes. Radiolysis chemistry is a possible non-thermal method of producing COMs in cold dark clouds. This new method greatly increases the modelled abundance of selected COMs upon the ice surface and within the ice mantle due to excitation and ionization events from cosmic ray bombardment. We examine the effect of radiolysis on three C2H4O2 isomers – methyl formate (HCOOCH3), glycolaldehyde (HCOCH2OH), and acetic acid (CH3COOH) – and a chemically similar molecule, dimethyl ether (CH3OCH3), in cold dark clouds. We then compare our modelled gaseous abundances with observed abundances in TMC-1, L1689B, and B1-b.


Author(s):  
Stephanie Probst ◽  
Johannes Fels ◽  
Bettina Scharner ◽  
Natascha A. Wolff ◽  
Eleni Roussa ◽  
...  

AbstractThe liver hormone hepcidin regulates systemic iron homeostasis. Hepcidin is also expressed by the kidney, but exclusively in distal nephron segments. Several studies suggest hepcidin protects against kidney damage involving Fe2+ overload. The nephrotoxic non-essential metal ion Cd2+ can displace Fe2+ from cellular biomolecules, causing oxidative stress and cell death. The role of hepcidin in Fe2+ and Cd2+ toxicity was assessed in mouse renal cortical [mCCD(cl.1)] and inner medullary [mIMCD3] collecting duct cell lines. Cells were exposed to equipotent Cd2+ (0.5–5 μmol/l) and/or Fe2+ (50–100 μmol/l) for 4–24 h. Hepcidin (Hamp1) was transiently silenced by RNAi or overexpressed by plasmid transfection. Hepcidin or catalase expression were evaluated by RT-PCR, qPCR, immunoblotting or immunofluorescence microscopy, and cell fate by MTT, apoptosis and necrosis assays. Reactive oxygen species (ROS) were detected using CellROX™ Green and catalase activity by fluorometry. Hepcidin upregulation protected against Fe2+-induced mIMCD3 cell death by increasing catalase activity and reducing ROS, but exacerbated Cd2+-induced catalase dysfunction, increasing ROS and cell death. Opposite effects were observed with Hamp1 siRNA. Similar to Hamp1 silencing, increased intracellular Fe2+ prevented Cd2+ damage, ROS formation and catalase disruption whereas chelation of intracellular Fe2+ with desferrioxamine augmented Cd2+ damage, corresponding to hepcidin upregulation. Comparable effects were observed in mCCD(cl.1) cells, indicating equivalent functions of renal hepcidin in different collecting duct segments. In conclusion, hepcidin likely binds Fe2+, but not Cd2+. Because Fe2+ and Cd2+ compete for functional binding sites in proteins, hepcidin affects their free metal ion pools and differentially impacts downstream processes and cell fate.


Sign in / Sign up

Export Citation Format

Share Document