scholarly journals Chemisorption Characteristics of 2,4-Dichlorophenol in Aqueous Solution onto Different Adsorbents

2005 ◽  
Vol 23 (3) ◽  
pp. 225-233 ◽  
Author(s):  
Fei Zhenghao ◽  
Xia Mingfang ◽  
Wu Lin ◽  
Chen Jinlong ◽  
Gu Yunlan ◽  
...  

The adsorption properties towards 2,4-dichlorophenol of several adsorption resins, viz. ZH-01, ZH-02 and ZH-03 respectively modified with different functional groups, and of granular activated carbon (GAC) have been compared experimentally with those of Amberlite XAD-4. This paper focuses on the static equilibrium adsorption behaviours and the confirmation of chemisorption characteristics. An equation relating the amount chemisorbed and the assumed chemisorption equilibrium concentration of adsorbate in the aqueous solution was established. This shows that the data may be fitted perfectly by the Langmuir equation. The adsorption capacities measured at different temperatures and the static desorption efficiency reveal that the adsorption of 2,4-dichlorophenol from water onto ZH-01, ZH-02, ZH-03 or GAC occurs via a simultaneous process involving physical adsorption and chemical reaction.

2019 ◽  
Vol 80 (1) ◽  
pp. 86-97
Author(s):  
Peidong Su ◽  
Junke Zhang ◽  
Jiawei Tang ◽  
Chunhui Zhang

Abstract The present study investigated the preparation of nitric acid modified powder activated carbon (MPAC) and its adsorption of trace amounts of Ni(II) from aqueous solution. Results showed that raw powder activated carbon modified with 15% nitric acid (MPAC-15%) had the most developed pore structure and the highest adsorption efficiency for Ni(II) in aqueous solution. For MPAC-15%, the pore width was dominated by micropores with pore width about 1 nm and the total amount of chemical functional groups of MPAC-15% was 0.6630 mmol/g. Ni(II) adsorption tests indicated that the highest adsorption efficiency of MPAC-15% was 98%. The adsorption saturation time of MPAC-15% was about 120 min and the pH-dependent adsorption test showed that neutral conditions (6.5 < pH < 7.5) were suitable for Ni(II) adsorption. The adsorption kinetic analysis revealed that the pseudo-second order adsorption model fitted the adsorption process significantly. Thus, Ni(II) adsorption by MPAC-15% was dominated not only by physical adsorption via highly developed micropores but also by chemical adsorption between Ni(II) and surface functional groups. Adsorption isotherm analysis illustrated the Langmuir model was favorable for the adsorption of Ni(II), with R2 = 0.9874.


2010 ◽  
Vol 156-157 ◽  
pp. 272-278 ◽  
Author(s):  
Yi Nan Hao ◽  
Xi Ming Wang

Xanthoceras Sorbifolia Bunge crust was used as source material to make carbon by chemically impregnated by sodium hydroxide、carbonized at 220°C and activated under the protection of the nitrogen. Experiments were carried out as function of contact time, pH (4-10) and temperature (293,303 and 313K). Adsorption isotherms were modeled with the Langmuir and Freundlich isotherms. Adsorption isotherms of Basic Fuchsin on Xanthoceras Sorbifolia Bunge crust activated carbon are consistent with Langmuir equation. The Langmuir monolayer saturation capacities of BF adsorbed onto activated carbon were 286.545, 303.617 and 323.816 mg/g at 293,303, and 313 K, respectively.and adsorption kinetics were found to conform to the pseudo-second-order kinetics with good correlation.Using the equilibrium concentration contents obtained at different temperatures, various thermodynamic parameters,such as △G,△H and △S, have been calculated. The thermodynamics parameters of system indicated spontaneous and endothermic process.


2020 ◽  
Vol 82 (10) ◽  
pp. 2159-2167
Author(s):  
Ru-yi Zhou ◽  
Jun-xia Yu ◽  
Ru-an Chi

Abstract Double functional groups modified bagasse (DFMBs), a series of new zwitterionic groups of carboxyl and amine modified adsorbents, were prepared through grafting tetraethylenepentamine (TEPA) onto the pyromellitic dianhydride (PMDA) modified bagasse using the DCC/DMAP method. DFMBs' ability to simultaneously remove basic magenta (BM, cationic dye) and Congo red (CR, anionic dye) from aqueous solution in single and binary dye systems was investigated. FTIR spectra and Zeta potential analysis results showed that PMDA and TEPA were successfully grafted onto the surface of bagasse, and the ratio of the amount of carboxyl groups and amine groups was controlled by the addition of a dosage of TEPA. Adsorption results showed that adsorption capacities of DFMBs for BM decreased while that for CR increased with the increase of the amount of TEPA in both single and binary dye systems, and BM or CR was absorbed on the modified biosorbents was mainly through electrostatic attraction and hydrogen bond. The adsorption for BM and CR could reach equilibrium within 300 min, both processes were fitted well by the pseudo-second-order kinetic model. The cationic and anionic dyes removal experiment in the binary system showed that DMFBs could be chosen as adsorbents to treat wastewater containing different ratios of cationic and anionic dyes.


2020 ◽  
Vol 9 (1) ◽  
pp. 318-327

Adsorption is a widely used technique for wastewater remediation. The process is effective and economical for the removal of various pollutants from wastewater, including dyes. Moreover, Besides commercial activated carbon, different low-cost materials such as agricultural and industrial wastes are now used as adsorbents. The present review focused on the removal of a teratogenic and carcinogenic dye, orange G (OG) via adsorption using several adsorbents, together with the experimental conditions and their adsorption capacities. Based on the information compiled, various adsorbents have shown promising potential for OG removal.


2011 ◽  
Vol 704-705 ◽  
pp. 486-491
Author(s):  
Yi Nan Hao ◽  
Xi Ming Wang ◽  
Li Jun Ding ◽  
Da Yan Ma

Xanthoceras Sorbifolia Bunge hull activated carbon (XSBHAC) developed by phosphoric acid activation for removing basic fuchsin (BF) has been investigated. Experiments were carried out as function of contact time, pH (4-10) and temperature (303,313 and 323K). Adsorption isotherms were modeled with the Langmuir and Freundlich isotherms. The data fitted well with the Langmuir isotherm. The Langmuir monolayer saturation capacities of BF adsorbed onto activated carbon were 351.35, 354.96 and 355.94 mg/g at 303,313, and 323 K, respectively.The kinetic models were also studied .The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation.Using the equilibrium concentration contents obtained at different temperatures, various thermodynamic parameters,such as △G,△H and △S, have been calculated. The thermodynamics parameters of system indicated spontaneous and endothermic process. Key words: Xanthoceras sorbifolia bunge hull;biosorption; basic fuchsin


2012 ◽  
Vol 9 (2) ◽  
pp. 938-948 ◽  
Author(s):  
Liliana Giraldo ◽  
Juan Carlos Moreno-Piraján

We obtain activated carbons with high portion of meso pores using coffee residues as precursor for the application of adsorption of large adsorbates. Because of its natural properties, the coffee residue exhibited a large pore size. In this work, the coffee residue were impregnated with ZnCl2and KOH, and then carbonized under the nitrogen conditions and activated with CO2respectively. Obtained activated carbons are used in the adsorption of ions Hg(II) and Zn(II). These adsorbents are efficacious to remove these ions from aqueous solution, with monocomponent equilibrium adsorption capacities ranging from from 0.002 to 0.380 mmol∙g-1for Hg on ACK3 and from 0.002 to 0.330 mmol∙g-1for ACZ3. For Zn(II) on ACK2 from 0.002 to 0.300 mmol∙g-1, and from 0.001 to 0.274 mmol∙g-1for ACZ2.


RSC Advances ◽  
2016 ◽  
Vol 6 (47) ◽  
pp. 40818-40827 ◽  
Author(s):  
Zizhang Guo ◽  
Jian Zhang ◽  
Hai Liu

This study shows that oxalic acid (OA) and succinic acid (SA) were employed to modify Phragmites australis (PA)-based activated carbons (ACs) during phosphoric acid activation to improve Rhodamine B (RhB) removal from aqueous solutions.


2012 ◽  
Vol 66 (8) ◽  
pp. 1799-1805 ◽  
Author(s):  
Lu Zhaoyang ◽  
Jiang Bicun ◽  
Li Aimin

The adsorption of phenol, p-nitrophenol, aniline, and nitrobenzene onto a commercial granular activated carbon (GAC: F400) preloaded with tannic acid (TA), a model background contaminant, was investigated. Compared with virgin GAC, the adsorption capacities of the four selected aromatic organic compounds (AOCs) onto GACs preloaded with TA at three densities were affected significantly. Also, the relationship between the adsorption capacities of AOCs and the characteristics of GACs was further discussed and clarified in this manuscript. The differences in the functional groups attached to the AOCs did not affect the similar linear relationship between the micropore surface area and their capacities to AOCs. However, the adsorption capacities of AOCs on TA-loaded GAC were affected by the different functional groups on the four AOCs: 67.6% of the capacity of aniline for virgin F400 remained on F400c (a preloaded GAC), compared with 23.8, 25.9, and 36.5% of phenol, p-nitrophenol, and nitrobenzene, respectively. The diversity of adsorption behavior of the four AOCs with different substituents was the result of hybrid contributions, such as hydrogen bonding, hydrophobic effect and aromatic stacking.


1996 ◽  
Vol 34 (9) ◽  
pp. 215-222 ◽  
Author(s):  
C. Brasquet ◽  
J. Roussy ◽  
E. Subrenat ◽  
P. Le Cloirec

The adsorption of polluted solutions is performed by different kinds of activated carbon: grains, powder and fibers (cloth or felt). The adsorption is carried out in a batch reactor. Classic models are applied and kinetic constants are calculated. Results showed that the performance of fiber activated carbon (FAC) is significantly higher than that of granular activated carbon (GAC). Moreover, FAC's adsorption capacities of phenol are greater than GAC's. Therefore the application of FAC adsorbers may lead to smaller adsorption reactors. The breakthrough curves obtained with FAC adsorbers are particularly steep, suggesting a smaller mass transfer resistance than GAC. The adsorption zone in the FAC bed is about 3.4 mm and is not dependent on the flow rate within the range 0.67 - 2.07 m.h−1. The selectivity of the FAC between different size of soluble molecules is shown. Then, an Ultrafiltration (UF) membrane is coupled with FAC to remove successively macromolecules (humic substances) and phenols present together in an aqueous solution. This new and original approach to a water treatment compact process successfully put to use. Industrial developments are put forward.


Sign in / Sign up

Export Citation Format

Share Document