Advances in Brassinolide Regulation of Plant Growth and Development and Stress Resistance

2020 ◽  
Vol 10 (06) ◽  
pp. 407-418
Author(s):  
扬锟 周
2020 ◽  
Vol 21 (5) ◽  
pp. 1792 ◽  
Author(s):  
Lei Tian ◽  
Xiaolong Lin ◽  
Jun Tian ◽  
Li Ji ◽  
Yalin Chen ◽  
...  

Plants are associated with hundreds of thousands of microbes that are present outside on the surfaces or colonizing inside plant organs, such as leaves and roots. Plant-associated microbiota plays a vital role in regulating various biological processes and affects a wide range of traits involved in plant growth and development, as well as plant responses to adverse environmental conditions. An increasing number of studies have illustrated the important role of microbiota in crop plant growth and environmental stress resistance, which overall assists agricultural sustainability. Beneficial bacteria and fungi have been isolated and applied, which show potential applications in the improvement of agricultural technologies, as well as plant growth promotion and stress resistance, which all lead to enhanced crop yields. The symbioses of arbuscular mycorrhizal fungi, rhizobia and Frankia species with their host plants have been intensively studied to provide mechanistic insights into the mutual beneficial relationship of plant–microbe interactions. With the advances in second generation sequencing and omic technologies, a number of important mechanisms underlying plant–microbe interactions have been unraveled. However, the associations of microbes with their host plants are more complicated than expected, and many questions remain without proper answers. These include the influence of microbiota on the allelochemical effect caused by one plant upon another via the production of chemical compounds, or how the monoculture of crops influences their rhizosphere microbial community and diversity, which in turn affects the crop growth and responses to environmental stresses. In this review, first, we systematically illustrate the impacts of beneficial microbiota, particularly beneficial bacteria and fungi on crop plant growth and development and, then, discuss the correlations between the beneficial microbiota and their host plants. Finally, we provide some perspectives for future studies on plant–microbe interactions.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11505
Author(s):  
Hai Wang ◽  
Tong Li ◽  
Wei Li ◽  
Wang Wang ◽  
Huien Zhao

NAC (NAM, ATAF1-2, and CUC2) transcription factors (TFs) play a vital role in plant growth and development, as well as in plant response to biotic and abiotic stressors (Duan et al., 2019; Guerin et al., 2019). Chrysanthemum is a plant with strong stress resistance and adaptability; therefore, a systematic study of NAC TFs in chrysanthemum is of great significance for plant breeding. In this study, 153 putative NAC TFs were identified based on the Chrysanthemum nankingense genome. According to the NAC family in Arabidopsis and rice, a rootless phylogenetic tree was constructed, in which the 153 CnNAC TFs were divided into two groups and 19 subfamilies. Moreover, the expression levels of 12 CnNAC TFs belonging to the OsNAC7 subfamily were analyzed in C. nankingense under osmotic and salt stresses, and different tissues were tested during different growth periods. The results showed that these 12 OsNAC7 subfamily members were involved in the regulation of root and stem growth, as well as in the regulation of drought and salt stresses. Finally, we investigated the function of the CHR00069684 gene, and the results showed that CHR00069684 could confer improved salt and low temperature resistance, enhance ABA sensitivity, and lead to early flowering in tobacco. It was proved that members of the OsNAC7 subfamily have dual functions including the regulation of resistance and the mediation of plant growth and development. This study provides comprehensive information on analyzing the function of CnNAC TFs, and also reveals the important role of OsNAC7 subfamily genes in response to abiotic stress and the regulation of plant growth. These results provide new ideas for plant breeding to control stress resistance and growth simultaneously.


2022 ◽  
Vol 55 (1) ◽  
Author(s):  
Canhong Gao ◽  
Kun Gao ◽  
Huixian Yang ◽  
Tangdan Ju ◽  
Jingyi Zhu ◽  
...  

Abstract Background Maize (Zea mays L.) is a widely cultivated cereal and has been used as an optimum heavy metal phytoremediation crop. Metallothionein (MT) proteins are small, cysteine-rich, proteins that play important roles in plant growth and development, and the regulation of stress response to heavy metals. However, the MT genes for maize have not been fully analyzed so far. Methods The putative ZmMT genes were identified by HMMER.The heat map of ZmMT genes spatial expression analysis was generated by using R with the log2 (FPKM + 1).The expression profiles of ZmMT genes under three kinds of heavy metal stresses were quantified by using qRT-PCR. The metallothionein proteins was aligned using MAFFT and phylogenetic analysis were constructed by ClustalX 2.1. The protein theoretical molecular weight and pI, subcellular localization, TFs binding sites, were predicted using ProtParam, PSORT, PlantTFDB, respectively. Results A total of 9 ZmMT genes were identified in the whole genome of maize. The results showed that eight of the nine ZmMT proteins contained one highly conserved metallothio_2 domain, while ZmMT4 contained a Metallothio_PEC domain. All the ZmMT proteins could be classified into three major groups and located on five chromosomes. The ZmMT promoters contain a large number of hormone regulatory elements and hormone-related transcription factor binding sites. The ZmMT genes exhibited spatiotemporal specific expression patterns in 23 tissues of maize development stages and showed the different expression patterns in response to Cu, Cd, and Pb heavy metal stresses. Conclusions We identified the 9 ZmMT genes, and explored their conserved motif, tissue expression patterns, evolutionary relationship. The expression profiles of ZmMT genes under three kinds of heavy metal stresses (Cu, Cd, Pb) were analyzed. In summary, the expression of ZmMTs have poteintial to be regulated by hormones. The specific expression of ZmMTs in different tissues of maize and the response to different heavy metal stresses are revealed that the role of MT in plant growth and development, and stress resistance to heavy metals.


Author(s):  
Bao-Zhen Zhao ◽  
Yang Yu ◽  
Zhi Yang ◽  
Qi Ding ◽  
Na Cui

Aims: SPS (Sucrose phosphate synthase) participates in plant growth and yield formation, and plays an important role in plant stress resistance. This study used T-DNA insertion mutant of AtSPS in Arabidopsis as test material. The growth indexes and soluble sugar contents of Arabidopsis thaliana under salt stress, osmotic stress and low temperature stress were determined, which laid the foundation for further understanding the mechanism of SPS in plant growth and development and abiotic stress resistance. Study Design: In order to analyze the mechanism of SPS in plant growth and development and abiotic stress resistance, this study used T-DNA insertion mutant of AtSPS in Arabidopsis as test material. The growth indexes and soluble sugar contents of Arabidopsis thaliana under salt stress, osmotic stress and low temperature stress were determined. Place and Duration of Study: College of Biological Science and Technology, between December 2020 and May 2021. Methodology: The contents of soluble sugar in tomato fruits were measured with HPLC (High performance liquid chromatography). The growth indexes were determined. Results: The results showed that AtSPS played positive regulation roles in seed germination and seedling growth of Arabidopsis thaliana. However, under abiotic stress conditions, AtSPS mutant increased the contents of soluble sugar, suggesting that Arabidopsis thaliana seedlings might improve resistance through osmotic regulating substances. Conclusion: AtSPS played positive regulation roles in seed germination and seedling growth of Arabidopsis. Meanwhile, AtSPS mutant increased the contents of soluble sugar to increase resistance of Arabidopsis under abiotic stresses, and the growth and development were blocked, suggesting that SPS was negative regulatory element to resist abiotic stress.


2015 ◽  
Vol 58 ◽  
pp. 61-70 ◽  
Author(s):  
Paul B. Larsen

Ethylene is the simplest unsaturated hydrocarbon, yet it has profound effects on plant growth and development, including many agriculturally important phenomena. Analysis of the mechanisms underlying ethylene biosynthesis and signalling have resulted in the elucidation of multistep mechanisms which at first glance appear simple, but in fact represent several levels of control to tightly regulate the level of production and response. Ethylene biosynthesis represents a two-step process that is regulated at both the transcriptional and post-translational levels, thus enabling plants to control the amount of ethylene produced with regard to promotion of responses such as climacteric flower senescence and fruit ripening. Ethylene production subsequently results in activation of the ethylene response, as ethylene accumulation will trigger the ethylene signalling pathway to activate ethylene-dependent transcription for promotion of the response and for resetting the pathway. A more detailed knowledge of the mechanisms underlying biosynthesis and the ethylene response will ultimately enable new approaches to be developed for control of the initiation and progression of ethylene-dependent developmental processes, many of which are of horticultural significance.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 508e-508
Author(s):  
Bin Liu ◽  
Royal D. Heins

A concept of ratio of radiant to thermal energy (RRT) has been developed to deal with the interactive effect of light and temperature on plant growth and development. This study further confirms that RRT is a useful parameter for plant growth, development, and quality control. Based on greenhouse experiments conducted with 27 treatment combinations of temperature, light, and plant spacing, a model for poinsettia plant growth and development was constructed using the computer program STELLA II. Results from the model simulation with different levels of daily light integral, temperature, and plant spacing showed that the RRT significantly affects leaf unfolding rate when RRT is lower than 0.025 mol/degree-day per plant. Plant dry weight is highly correlated with RRT; it increases linearly as RRT increases.


Sign in / Sign up

Export Citation Format

Share Document