scholarly journals Characterization of a new laboratory ceramic product from industrial by-products as raw materials and caustic magnesia as additive

2013 ◽  
Vol 47 (4) ◽  
pp. 2050
Author(s):  
V. Skliros ◽  
P. G. Lampropoulou ◽  
B. Tsikouras ◽  
K. Hatzipanagiotou ◽  
A. Christogerou ◽  
...  

A new ceramic product is introduced by mixing caustic magnesia, produced in the laboratory from pure, high quality magnesite, and natural silt. Bottom ash and red mud, two well known environmentally hazardous industrial by-products, were also added in the mixture. After testing various recipes we concluded that addition of 5% caustic magnesia in the ceramic product greatly enhances its performance. Increase bonding of the ceramic microstructure is attributed to the formation of periclase necks, the concurrent formation of small quantities of amorphous material and the homogeneously distributed pores during the experimental firing of the mixture. Combined X-ray Diffractometry and Scanning Electron Microscopy of the ceramic product revealed the occurrence of unreactive phases, inherited by the raw materials, as well as newly-formed albite and magnesioferrite. Our results show that utilization of by-products may be important and environmental friendly materials in producing low cost ceramic building materials.

2021 ◽  
Vol 906 (1) ◽  
pp. 012046
Author(s):  
Elena Shapakidze ◽  
Izolda Kamushadze ◽  
Lamara Gabunia ◽  
Ioseb Gejadze ◽  
Rajden Skhxvitaridze ◽  
...  

Abstract The main material for the modern construction business is cement/concrete, the production of which is associated with high energy and material costs and, most importantly, high CO2 emissions into the atmosphere. Based on this, the development of technologies for new energy-efficient building materials - substitutes for Portland cement is of great importance. One of the ways to solve this problem could be the wider use of ceramic building materials, the production of which requires less energy and is not associated with high CO2 emissions compared to the production of Portland cement. The subject of this article is the development of innovative technologies for the production of ceramic building materials in Georgia (ordinary building bricks and clinker bricks) by using unconventional raw material - clay shale aluvium which is a waste of natural (exogenous) processes. As the main component of the ceramic mass, we used clay shale aluvium from the Duruji river bed near the town of Kvareli, which made it possible to reduce the firing temperature and improve the quality of the finished product. X-ray phase, petrographic and electronic microscopic studies have shown that ceramic products, both building and clinker bricks, made with the use of Kvareli shale, under the same firing conditions, have been obtained with a denser structure ensuring higher physical and mechanical features as compared to clay Metekhi, which is currently used by the brick factory in Georgia. The use of shale accumulated in the region of Kvareli in various areas of the economy (including production of ceramic building materials) will make it possible to clear the adjacent territory from risky deposits of natural alluvium, which threatens to flood the city and provide companies engaged in production of ceramic building materials with low-cost and environmentally friendly raw materials.


2016 ◽  
Vol 690 ◽  
pp. 150-155 ◽  
Author(s):  
Toyohiko Sugiyama ◽  
Keiji Kusumoto ◽  
Masayoshi Ohashi ◽  
Akinori Kamiya

The global warming is one of the most serious problems. The decrease of CO2 emissions in our daily life is an important subject today. Recently, an application of water retentive materials as a paving material has attracted a great deal of attention in Japan. This material is effective for reducing heat island phenomenon, which is also a recent problem in many cities in Japan. Water retained in the material during rainfall evaporates when heated by sunshine. The latent heat absorbed by evaporating water works to cool the surroundings. The water retentive ceramic products are expected to be useful for building materials as well as pavements. Several performances are required on the water retentive ceramics when it is used as building materials. Its cost and quality are the important factors. Porous ceramic materials formed by pressing without firing is one of ideal low cost and eco-friendly candidates. The porous ceramics is also expected to be produced from recycled ceramic materials. By optimizing its composition and forming method, a water retentive material with high performance was developed. The trial product had the properties as follows; fracture toughness: 1300N, bending strength: 175N/cm, water absorption: larger than 30%, and precision in size (length): +-0.5mm for 150mm. The product showed also enough frost resistance. In this paper, the fundamental properties of the porous ceramics prepared without firing are discussed with referring to the results of the field experiments.Another subject recently studied by several tile manufactures in Japan is the glazed tile with high solar reflectance. The exterior walls covered with such a high solar reflectance tile keeps the surface temperature of the wall lower under the strong sunshine of summer. It is effective against heat-island phenomenon. In this paper, the outline of the research results on visible and infrared reflectance of many kinds of glazes is also discussed.


2021 ◽  
Vol 71 (344) ◽  
pp. e259
Author(s):  
F. Puertas ◽  
J. A. Suárez-Navarro ◽  
M. M. Alonso ◽  
C. Gascó

The use of industrial waste and/or by-products as alternative sources of raw materials in building materials has become standard practice. The result, more sustainable construction, is contributing to the institution of a circular economy. Nonetheless, all necessary precautions must be taken to ensure that the inclusion and use of such materials entail no new health hazard for people or their environment. Due to the processes involved in generating industrial waste/by-products, these alternative or secondary materials may be contaminated with heavy metals, other undesirable chemicals or high levels of natural radioactivity that may constrain their use. In-depth and realistic research on such industrial waste is consequently requisite to its deployment in building materials. This paper reviews the basic concepts associated with radioactivity and natural radioactivity, focusing on industrial waste/by-products comprising Naturally Occurring Radioactive Materials (NORM) used in cement and concrete manufacture. Updated radiological data are furnished on such waste (including plant fly ash, iron and steel mill slag, bauxite and phosphogypsum waste) and on other materials such as limestone, gypsum and so on. The paper also presents recent findings on radionuclide activity concentrations in Portland cements and concretes not bearing NORMs. The role of natural aggregate in end concrete radiological behaviour is broached. The radiological behaviour of alternative non-portland cements and concretes, such as alkali-activated materials and geopolymers, is also addressed.


2014 ◽  
Vol 1000 ◽  
pp. 170-173
Author(s):  
Vit Cerný

At present high temperature fly ashes are already quite widely used as a secondary raw material in building materials. Fly ashes are usually able to fully replace classical materials. FBC ashes also gradually finding their place for example in production of autoclaved aerated concrete, in binders or solidification of hazardous waste. However, the coarser types of energy by-products are relatively difficult to use. Therefore, this part of the work focused on the study of usability of bottom ashes for artificial sintered aggregates. The article will focus on results of laboratory firing in muffle furnace, dedicated to testing of maximum bottom ash content in the mixture with the fly ash and special type of clay.


2021 ◽  
Vol 13 (17) ◽  
pp. 9938
Author(s):  
Nuno Cristelo ◽  
Fernando Castro ◽  
Tiago Miranda ◽  
Zahra Abdollahnejad ◽  
Ana Fernández-Jiménez

The sustainability of resources is becoming a worldwide concern, including construction and building materials, especially with the alarming increase rate in global population. Alternative solutions to ordinary Portland cement (OPC) as a concrete binder are being studied, namely the so-called alkali-activated cements (AAC). These are less harmful to the environment, as lower CO2 emissions are associated with their fabrication, and their mechanical properties can be similar to those of the OPC. The aim of developing alkali-activated materials (AAM) is the maximization of the incorporated recycled materials, which minimises the CO2 emissions and cost, while also achieving acceptable properties for construction applications. Therefore, various efforts are being made to produce sustainable construction materials based on different sources and raw materials. Recently, significant attention has been raised from the by-products of the steelmaking industry, mostly due to their widespread availability. In this paper, ladle slag (LS) resulting from steelmaking operations was studied as the main precursor to produce AAC, combined with phosphating bath sludge—or phosphate sludge (PS)—and aluminium anodising sludge (AS), two by-products of the surface treatment of metals, in replacement rates of 10 and 20 wt.%. The precursors were activated by two different alkaline solutions: a combination of commercial sodium hydroxide and sodium silicate (COM), and a disposed solution from the cleaning of aluminium extrusion steel dies (CLE). This study assesses the influence of these by-products from the steelmaking industry (PS, AS and CLE) on the performance of the alkali-activated LS, and specifically on its fresh and hardened state properties, including rheology, heat of hydration, compressive strength and microstructure and mineralogy (X-ray diffraction, scanning electron microscopy coupled with energy dispersive spectroscopy and Fourier transform infra-red. The results showed that the CLE had no negative impact on the strength of the AAM incorporating PS or/and AS, while increasing the strength of the LS alone by 2×. Additionally, regardless of the precursor combination, the use of a commercial activator (COM) led to more fluid pastes, compared with the CLE.


2021 ◽  
Vol 309 ◽  
pp. 01197
Author(s):  
G.V.V. Satyanarayana ◽  
A. Ranjith

Today the disposal of various by-product materials is a concern against the environment, these are producing due to rapid industrial growth in our country. Most of the researchers are focused on the utilization of these by-products in the civil engineering construction industry. By using these by-products, on one hand, will protect the environment and other hands the disposal problem will be solved. Day by day the requirement of building materials increased due to urbanization, due to this more raw materials are required and depleted the natural resources. In this contest, environmental protection is need to protect incremental temperature in nature. To avoid these problems of the modern era, aggregation of these by-products can be used as one of building material and to overcome this situation, Aerated concrete is one of the solutions by reducing the raw material quantity in concrete like sand and cement by introducing air without compromising in the volume. Day to day aerated concrete has become popular due to lightweight and high insulation against temperature and sound. This concrete is using in high raised buildings to reduce the self-weight of building to protect during earthquake situations. In this experimental study mainly performed the compressive strength of aerated concrete with replacement of sand by quarry dust. Also reducing the cement content with replacement of fly ash, GGBS and lime powder at various percentages that is ranging. the performance of aerated concrete was observed more satisfactory when compared with and without replacement of above-saided materials.


2013 ◽  
Vol 67 (2) ◽  
pp. 277-291 ◽  
Author(s):  
Jelena Pejin ◽  
Milos Radosavljevic ◽  
Olgica Grujic ◽  
Ljiljana Mojovic ◽  
Suncica Kocic-Tanackov ◽  
...  

Brewer?s spent grain is the major by-product in beer production. It is produced in large quantities (20 kg per 100 liters of produced beer) throughout the year at a low cost or no cost, and due to its high protein and carbohydrates content it can be used as a raw material in biotechnology. Biotechnological processes based on renewable agro-industrial by-products have ecological (zero CO2 emission, eco-friendly by-products) and economical (cheap raw materials and reduction of storage costs) advantages. The use of brewer?s spent grain is still limited, being basically used as animal feed. Researchers are trying to improve the application of brewer?s spent grain by finding alternative uses apart from the current general use as an animal feed. Its possible applications are in human nutrition, as a raw material in biotechnology, energy production, charcoal production, paper manufacture, as a brick component, and adsorbent. In biotechnology brewer?s spent grain could be used as a substrate for cultivation of microorganisms and enzyme production, additive of yeast carrier in beer fermentation, raw material in production of lactic acid, bioethanol, biogas, phenolic acids, xylitol, and pullulan. Some possible applications for brewer?s spent grain are described in this article including pre-treatment conditions (different procedures for polysaccharides, hemicelluloses, and cellulose hydrolysis), working microorganisms, fermentation parameters and obtained yields. The chemical composition of brewer?s spent grain varies according to barley variety, harvesting time, malting and mashing conditions, and a quality and type of unmalted raw material used in beer production. Brewer?s spent grain is lignocellulosic material rich in protein and fibre, which account for approximately 20 and 70% of its composition, respectively.


Author(s):  
Amirhossein Abedini ◽  
Adel Mirza Alizadeh ◽  
Aida Mahdavi ◽  
S. Amirhossein Golzan ◽  
Mahla Salimi ◽  
...  

: By-products from the food sector now have a wide range of applications. Low-cost raw materials, followed by low-cost goods, are regarded as one of the sectors’ top goals. Because of its economic relevance, reduced price, and nutrients such as protein, fiber, carbs, and antioxidants, oilseed cakes (OCs) have found a desirable place in livestock and poultry feed. Furthermore, because the cake has the same desirable nutrients, its usage in the food business is unavoidable. However, its use in this sector is not simply for nutritious purposes and has it has different impacts on flavor, texture, color, and antioxidant qualities. Therefore, as a result of its desirable qualities, the cake can be more useful in extensive applications in the food business, as well as in the manufacture of supplements and novel foods. The current review looks at the reapplications of byproducts obtained from oilseeds (soybean, sunflower, sesame, canola, palm kernel, peanut, mustard, and almond) in the food sector in the future. Furthermore, allergenicity, toxicity, antinutritional compounds, and techniques of extracting cakes from oilseeds have been discussed.


2021 ◽  
Vol 38 ◽  
pp. 102191
Author(s):  
D. Eliche-Quesada ◽  
M.A. Felipe-Sesé ◽  
M.J. Fuentes-Sánchez
Keyword(s):  

2014 ◽  
Vol 803 ◽  
pp. 144-147 ◽  
Author(s):  
J. Temuujin ◽  
A. Minjigmaa ◽  
U. Bayarzul ◽  
Ts. Zolzaya ◽  
B. Davaabal ◽  
...  

With the increasing rate of depletion of natural raw materials for production of building materials, their sustainable usage is clearly an important topic for consideration. For instance, 1 tonne ordinary Portland cement (OPC) requires 1.7 tonnes of raw materials, 1.0 tonne of coal and 100 kWh of electricity. One tonne of cement emits 0.8 - 1 tonne of CO2 into atmosphere globally contributing ~5% of total manmade carbon dioxide. Therefore, the development of new, sustainable, low carbon footprint construction materials is an important task for materials scientists and civil engineers. One type of binder that is attracting particular attention around the world is alkali-aluminosilicate chemistry based material the so-called geopolymers. In this presentation we will discuss the fundamentals of geopolymer chemistry and the similarities to and differences from conventional alkali activated materials chemistry. Particular attention will be given to our latest results on the preparation of geopolymer type paste and concrete from fly ash. Mechanical activation of fly ash caused a decrease in porosity with a partial amorphisation of the crystalline constituents. Geopolymer type paste prepared from 30 minute milled Darkhan pond ash showed increase in 7 day compressive strengths by 7 times reaching of 15.4 (4.6) MPa. Keywords: Geopolymer binder, alkali-activated materials, coal combustion by products


Sign in / Sign up

Export Citation Format

Share Document