scholarly journals Neutron separation energies from nuclear mass systematics using neural networks

2019 ◽  
Vol 11 ◽  
Author(s):  
S. Athanassopoulos ◽  
E. Mavrommatis ◽  
K. A. Gernoth ◽  
J. W. Clark

Statistical modeling of data sets by neural-network techniques is offered as an alternative to traditional semi-empirical approaches to global modeling of nuclear properties. There is need for such systematics driven by fundamental investigations of nuclear structure far from stability, conducted at heavy-ion and radioactive-ion beam facilities. There is also great current interest from the perspective of astrophysics and of nuclear technology. In this work we evaluate the one and two neutron separation energies based on global models for the masses of nuclides developed with the use of neural networks[l] and compare them with the experimental ones as given by Audi at Atomic Mass Data Center web site [2], Our work on masses is a continuation of the work reported in ref. [3]. We have used enriched data sets together with a novel training algorithm and various coding schemes to achieve high performance both in learning and prediction. Our performance is comparable to the best of other evaluations of separation energies based on global models for the masses of nuclides (like those of Möller et al. [4] and Pearson et al. [5] that are rooted in conventional Hamiltonian theory), whereas the number of parameters is larger. Neural network modeling, as well as other statistical strategies based on new algorithms for artificial intelligence, may prove to be a useful asset in the further exploration of nuclear phenomena far from stability.

Author(s):  
D. R. Martinelli ◽  
Samir N. Shoukry

A neural network modeling approach is used to identify concrete specimens that contain internal cracks. Different types of neural nets are used and their performance is evaluated. Correct classification of the signals received from a cracked specimen could be achieved with an accuracy of 75 percent for the test set and 95 percent for the training set. These recognition rates lead to the correct classification of all the individual test specimens. Although some neural net architectures may show high performance with a particular training data set, their results might be inconsistent. In situations in which the number of data sets is small, consistent performance of a neural network may be achieved by shuffling the training and testing data sets.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1614
Author(s):  
Jonghun Jeong ◽  
Jong Sung Park ◽  
Hoeseok Yang

Recently, the necessity to run high-performance neural networks (NN) is increasing even in resource-constrained embedded systems such as wearable devices. However, due to the high computational and memory requirements of the NN applications, it is typically infeasible to execute them on a single device. Instead, it has been proposed to run a single NN application cooperatively on top of multiple devices, a so-called distributed neural network. In the distributed neural network, workloads of a single big NN application are distributed over multiple tiny devices. While the computation overhead could effectively be alleviated by this approach, the existing distributed NN techniques, such as MoDNN, still suffer from large traffics between the devices and vulnerability to communication failures. In order to get rid of such big communication overheads, a knowledge distillation based distributed NN, called Network of Neural Networks (NoNN), was proposed, which partitions the filters in the final convolutional layer of the original NN into multiple independent subsets and derives smaller NNs out of each subset. However, NoNN also has limitations in that the partitioning result may be unbalanced and it considerably compromises the correlation between filters in the original NN, which may result in an unacceptable accuracy degradation in case of communication failure. In this paper, in order to overcome these issues, we propose to enhance the partitioning strategy of NoNN in two aspects. First, we enhance the redundancy of the filters that are used to derive multiple smaller NNs by means of averaging to increase the immunity of the distributed NN to communication failure. Second, we propose a novel partitioning technique, modified from Eigenvector-based partitioning, to preserve the correlation between filters as much as possible while keeping the consistent number of filters distributed to each device. Throughout extensive experiments with the CIFAR-100 (Canadian Institute For Advanced Research-100) dataset, it has been observed that the proposed approach maintains high inference accuracy (over 70%, 1.53× improvement over the state-of-the-art approach), on average, even when a half of eight devices in a distributed NN fail to deliver their partial inference results.


2020 ◽  
Vol 11 (28) ◽  
pp. 7335-7348 ◽  
Author(s):  
Timothy E. H. Allen ◽  
Andrew J. Wedlake ◽  
Elena Gelžinytė ◽  
Charles Gong ◽  
Jonathan M. Goodman ◽  
...  

Deep learning neural networks, constructed for the prediction of chemical binding at 79 pharmacologically important human biological targets, show extremely high performance on test data (accuracy 92.2 ± 4.2%, MCC 0.814 ± 0.093, ROC-AUC 0.96 ± 0.04).


Author(s):  
Jingyuan Wang ◽  
Kai Feng ◽  
Junjie Wu

The deep network model, with the majority built on neural networks, has been proved to be a powerful framework to represent complex data for high performance machine learning. In recent years, more and more studies turn to nonneural network approaches to build diverse deep structures, and the Deep Stacking Network (DSN) model is one of such approaches that uses stacked easy-to-learn blocks to build a parameter-training-parallelizable deep network. In this paper, we propose a novel SVM-based Deep Stacking Network (SVM-DSN), which uses the DSN architecture to organize linear SVM classifiers for deep learning. A BP-like layer tuning scheme is also proposed to ensure holistic and local optimizations of stacked SVMs simultaneously. Some good math properties of SVM, such as the convex optimization, is introduced into the DSN framework by our model. From a global view, SVM-DSN can iteratively extract data representations layer by layer as a deep neural network but with parallelizability, and from a local view, each stacked SVM can converge to its optimal solution and obtain the support vectors, which compared with neural networks could lead to interesting improvements in anti-saturation and interpretability. Experimental results on both image and text data sets demonstrate the excellent performances of SVM-DSN compared with some competitive benchmark models.


2018 ◽  
Vol 246 ◽  
pp. 03044 ◽  
Author(s):  
Guozhao Zeng ◽  
Xiao Hu ◽  
Yueyue Chen

Convolutional Neural Networks (CNNs) have become the most advanced algorithms for deep learning. They are widely used in image processing, object detection and automatic translation. As the demand for CNNs continues to increase, the platforms on which they are deployed continue to expand. As an excellent low-power, high-performance, embedded solution, Digital Signal Processor (DSP) is used frequently in many key areas. This paper attempts to deploy the CNN to Texas Instruments (TI)’s TMS320C6678 multi-core DSP and optimize the main operations (convolution) to accommodate the DSP structure. The efficiency of the improved convolution operation has increased by tens of times.


2019 ◽  
Vol 64 (6) ◽  
pp. 669-675 ◽  
Author(s):  
Abdulaziz Alsayyari

Abstract A new technique for electronic fetal monitoring (EFM) using an efficient structure of neural networks based on the Legendre series is presented in this paper. Such a structure is achieved by training a Legendre series-based neural network (LNN) to classify the different fetal states based on recorded cardiotocographic (CTG) data sets given by others. These data sets consist of measurements of fetal heart rate (FHR) and uterine contraction (UC). The applied LNN utilizes a Legendre series expansion for the input vectors and, hence, has the capability to produce explicit equations describing multi-input multi-output systems. Simulations of the proposed technique in EFM demonstrate its high efficiency. Training the LNN requires a few number of iterations (5–10 epochs). The applied technique makes the classification of the fetal state available through equations combining the trained LNN weights and the current measured CTG record. A comparison of performance between the proposed LNN and other popular neural network techniques such as the Volterra neural network (VNN) in EFM is provided. The comparison shows that, the LNN outperforms the VNN in case of less computational requirements and fast convergence with a lower mean square error.


2009 ◽  
Vol 60 (12) ◽  
pp. 3051-3059 ◽  
Author(s):  
Hossam Adel Zaqoot ◽  
Abdul Khalique Ansari ◽  
Mukhtiar Ali Unar ◽  
Shaukat Hyat Khan

Artificial Neural Networks (ANNs) are flexible tools which are being used increasingly to predict and forecast water resources variables. The human activities in areas surrounding enclosed and semi-enclosed seas such as the Mediterranean Sea always produce in the long term a strong environmental impact in the form of coastal and marine degradation. The presence of dissolved oxygen is essential for the survival of most organisms in the water bodies. This paper is concerned with the use of ANNs — Multilayer Perceptron (MLP) and Radial Basis Function neural networks for predicting the next fortnight’s dissolved oxygen concentrations in the Mediterranean Sea water along Gaza. MLP and Radial Basis Function (RBF) neural networks are trained and developed with reference to five important oceanographic variables including water temperature, wind velocity, turbidity, pH and conductivity. These variables are considered as inputs of the network. The data sets used in this study consist of four years and collected from nine locations along Gaza coast. The network performance has been tested with different data sets and the results show satisfactory performance. Prediction results prove that neural network approach has good adaptability and extensive applicability for modelling the dissolved oxygen in the Mediterranean Sea along Gaza. We hope that the established model will help in assisting the local authorities in developing plans and policies to reduce the pollution along Gaza coastal waters to acceptable levels.


2017 ◽  
Vol 43 (4) ◽  
pp. 26-32 ◽  
Author(s):  
Sinan Mehmet Turp

AbstractThis study investigates the estimated adsorption efficiency of artificial Nickel (II) ions with perlite in an aqueous solution using artificial neural networks, based on 140 experimental data sets. Prediction using artificial neural networks is performed by enhancing the adsorption efficiency with the use of Nickel (II) ions, with the initial concentrations ranging from 0.1 mg/L to 10 mg/L, the adsorbent dosage ranging from 0.1 mg to 2 mg, and the varying time of effect ranging from 5 to 30 mins. This study presents an artificial neural network that predicts the adsorption efficiency of Nickel (II) ions with perlite. The best algorithm is determined as a quasi-Newton back-propagation algorithm. The performance of the artificial neural network is determined by coefficient determination (R2), and its architecture is 3-12-1. The prediction shows that there is an outstanding relationship between the experimental data and the predicted values.


2001 ◽  
Vol 11 (03) ◽  
pp. 247-255 ◽  
Author(s):  
GUIDO BOLOGNA

The problem of rule extraction from neural networks is NP-hard. This work presents a new technique to extract "if-then-else" rules from ensembles of DIMLP neural networks. Rules are extracted in polynomial time with respect to the dimensionality of the problem, the number of examples, and the size of the resulting network. Further, the degree of matching between extracted rules and neural network responses is 100%. Ensembles of DIMLP networks were trained on four data sets in the public domain. Extracted rules were on average significantly more accurate than those extracted from C4.5 decision trees.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Pradyut Kundu ◽  
Anupam Debsarkar ◽  
Somnath Mukherjee

The present paper deals with treatment of slaughterhouse wastewater by conducting a laboratory scale sequencing batch reactor (SBR) with different input characterized samples, and the experimental results are explored for the formulation of feedforward backpropagation artificial neural network (ANN) to predict combined removal efficiency of chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N). The reactor was operated under three different combinations of aerobic-anoxic sequence, namely, (4 + 4), (5 + 3), and (5 + 4) hour of total react period with influent COD and NH4+-N level of 2000 ± 100 mg/L and 120 ± 10 mg/L, respectively. ANN modeling was carried out using neural network tools, with Levenberg-Marquardt training algorithm. Various trials were examined for training of three types of ANN models (Models “A,” “B,” and “C”) using number of neurons in the hidden layer varying from 2 to 30. All together 29, data sets were used for each three types of model for which 15 data sets were used for training, 7 data sets for validation, and 7 data sets for testing. The experimental results were used for testing and validation of three types of ANN models. Three ANN models (Models “A,” “B,” and “C”) were trained and tested reasonably well to predict COD and NH4+-N removal efficiently with 3.33% experimental error.


Sign in / Sign up

Export Citation Format

Share Document