scholarly journals Sea grapes extract improves blood glucose, total cholesterol, and PGC-1α in rats fed on cholesterol- and fat-enriched diet

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 718
Author(s):  
Mury Kuswari ◽  
Fahrul Nurkolis ◽  
Nelly Mayulu ◽  
Faisal Maulana Ibrahim ◽  
Nurpudji Astuti Taslim ◽  
...  

Background: Sea grapes or  Caulerpa racemosa have a lot of phytochemical content, especially unsaturated fatty acids that are beneficial for health. This study aims to evaluate the effects of sea grapes extract on blood glucose levels, total cholesterol-, and Peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α in male Wistar rats, which were given per-oral (p.o.) cholesterol- and carbohydrates fat-enriched diets (CFED). Methods: Forty male Wistar albino rats weighing between 200 – 250 g were used for this study. Animals were randomly distributed into four groups of ten animals each. Group A served as control (received standard dry pellet diet). Rats in group B were fed on CFED for 4 weeks.  Groups C and D were fed on CFED and were administered 150 and 450 mg/kg of  sea grapes extract (p.o.), respectively. Results: Group C rats indicated a blood glucose reduction and an increase in PGC-1α serum, in comparison to group D (p<0.05). There were no significant differences between group C and D in blood cholesterol reduction (high dose of the extract did not have significant effects) (p=0.222), and both groups had the same effect in lowering total cholesterol in rats. Conclusion: Sea grapes extract is proven to improve blood glucose, total cholesterol, and PGC-1α levels in rats fed with CFED.

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 718
Author(s):  
Mury Kuswari ◽  
Fahrul Nurkolis ◽  
Nelly Mayulu ◽  
Faisal Maulana Ibrahim ◽  
Nurpudji Astuti Taslim ◽  
...  

Background: Sea grapes or  Caulerpa racemosa have a lot of phytochemical content, especially unsaturated fatty acids that are beneficial for health. This study aims to evaluate the effects of sea grapes extract on blood glucose levels, total cholesterol-, and Peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α in male Wistar rats, which were given per-oral (p.o.) cholesterol- and carbohydrates fat-enriched diets (CFED). Methods: Forty male Wistar albino rats weighing between 200 – 250 g were used for this study. Animals were randomly distributed into four groups of ten animals each. Group A served as control (received standard dry pellet diet). Rats in group B were fed on CFED for 4 weeks.  Groups C and D were fed on CFED and were administered 150 and 450 mg/kg of  sea grapes extract (p.o.), respectively. Results: Group C rats indicated a blood glucose reduction and an increase in PGC-1α serum, in comparison to group D (p<0.05). There were no significant differences between group C and D in blood cholesterol reduction (high dose of the extract did not have significant effects) (p=0.222), and both groups had the same effect in lowering total cholesterol in rats. Conclusion: Sea grapes extract is proven to improve blood glucose, total cholesterol, and PGC-1α levels in rats fed with CFED.


2017 ◽  
Vol 37 (14) ◽  
Author(s):  
Hyunbae Kim ◽  
Ze Zheng ◽  
Paul D. Walker ◽  
Gregory Kapatos ◽  
Kezhong Zhang

ABSTRACT Cyclic AMP-responsive element binding protein, hepatocyte specific (CREBH), is a liver-enriched, endoplasmic reticulum-tethered transcription factor known to regulate the hepatic acute-phase response and lipid homeostasis. In this study, we demonstrate that CREBH functions as a circadian transcriptional regulator that plays major roles in maintaining glucose homeostasis. The proteolytic cleavage and posttranslational acetylation modification of CREBH are regulated by the circadian clock. Functionally, CREBH is required in order to maintain circadian homeostasis of hepatic glycogen storage and blood glucose levels. CREBH regulates the rhythmic expression of the genes encoding the rate-limiting enzymes for glycogenolysis and gluconeogenesis, including liver glycogen phosphorylase (PYGL), phosphoenolpyruvate carboxykinase 1 (PCK1), and the glucose-6-phosphatase catalytic subunit (G6PC). CREBH interacts with peroxisome proliferator-activated receptor α (PPARα) to synergize its transcriptional activities in hepatic gluconeogenesis. The acetylation of CREBH at lysine residue 294 controls CREBH-PPARα interaction and synergy in regulating hepatic glucose metabolism in mice. CREBH deficiency leads to reduced blood glucose levels but increases hepatic glycogen levels during the daytime or upon fasting. In summary, our studies revealed that CREBH functions as a key metabolic regulator that controls glucose homeostasis across the circadian cycle or under metabolic stress.


2020 ◽  
Vol 21 (17) ◽  
pp. 6243 ◽  
Author(s):  
Yohei Tomita ◽  
Deokho Lee ◽  
Yukihiro Miwa ◽  
Xiaoyan Jiang ◽  
Masayuki Ohta ◽  
...  

Diabetic retinopathy (DR) is one of the leading causes of blindness globally. Retinal neuronal abnormalities occur in the early stage in DR. Therefore, maintaining retinal neuronal activity in DR may prevent vision loss. Previously, pemafibrate, a novel selective peroxisome proliferator-activated receptor alpha modulator, was suggested as a promising drug in hypertriglyceridemia. However, the role of pemafibrate remains obscure in DR. Therefore, we aimed to unravel systemic and retinal changes by pemafibrate in diabetes. Adult mice were intraperitoneally injected with streptozotocin (STZ) to induce diabetes. After STZ injection, diet supplemented with pemafibrate was given to STZ-induced diabetic mice for 12 weeks. During the experiment period, body weight and blood glucose levels were examined. Electroretinography was performed to check the retinal neural function. After sacrifice, the retina, liver, and blood samples were subjected to molecular analyses. We found pemafibrate mildly improved blood glucose level as well as lipid metabolism, boosted liver function, increased serum fibroblast growth factor21 level, restored retinal functional deficits, and increased retinal synaptophysin protein expression in STZ-induced diabetic mice. Our present data suggest a promising pemafibrate therapy for the prevention of early DR by improving systemic metabolism and protecting retinal function.


Glimepiride is an antidiabetic agent used for lowering blood glucose levels. It induces the activity of peroxisome proliferator-activated receptor-gamma (PPAR gamma). It lowers blood glucose levels by binding to ATP-sensitive potassium channel receptors on the surface of pancreatic cells. The purpose of this study was to perform a comparative analysis of different physicochemical parameters (weight variation, hardness, thickness, friability, disintegration time, and dissolution time) of 3 different commercially available brands of glimepiride in the market. Statistical analysis revealed minor variations in the results. It was found that GETRYL showed the highest % dissolution among all the 3 brands whereas AMARYL took the least time to disintegrate. According to the results of the friability test, Diabold shows the highest stability in the friabilator. However, all 3 brands complied with the official pharmacopoeial limits. The quality of the drug largely influences its therapeutic activity. Hence, owing to the similar physicochemical profile, all the 3 brands can be interchangeably used.


Author(s):  
Dalia Medhat ◽  
Mona A. El-Bana ◽  
Sherien M. El-Daly ◽  
Magdi N. Ashour ◽  
Tahany R. Elias ◽  
...  

Abstract Objective To evaluate the influence of irisin on the experimental paradigm of non-alcoholic fatty liver (NAFL) as a part of MetS cluster. Methods Forty male albino rats were divided into four groups; normal control, standard diet + irisin, high carbohydrate and fat diet (HCHF), and HCHF + irisin. After the experimental period, levels of fasting blood sugar (FBS), insulin, lipid profile, kidney functions, salusin-alpha (Sal-α), adropin, and retinol-binding protein-4 (RBP-4) were evaluated. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α) expression in skeletal muscle was evaluated by quantitative real-time PCR. Aorta, liver, pancreas, and skeletal muscle tissue samples were prepared for histopathological examination. Results Rats administrated HCHF showed elevated levels of FBS, lipid profile, kidney functions, RBP-4, and downregulation of PGC-1α expression along with a decline in levels of insulin, Sal-α, and adropin while administration of irisin significantly attenuated these levels. Conclusions Irisin as based therapy could emerge as a new line of treatment against MetS and its related diseases.


2021 ◽  
Vol 22 (8) ◽  
pp. 3829
Author(s):  
Mohamed F. Dora ◽  
Nabil M. Taha ◽  
Mohamed A. Lebda ◽  
Aml E. Hashem ◽  
Mohamed S. Elfeky ◽  
...  

Iron oxide nanoparticle (IONP) therapy has diverse health benefits but high doses or prolonged therapy might induce oxidative cellular injuries especially in the brain. Therefore, we conducted the current study to investigate the protective role of quercetin supplementation against the oxidative alterations induced in the brains of rats due to IONPs. Forty adult male albino rats were allocated into equal five groups; the control received a normal basal diet, the IONP group was intraperitoneally injected with IONPs of 50 mg/kg body weight (B.W.) and quercetin-treated groups had IONPs + Q25, IONPs + Q50 and IONPs + Q100 that were orally supplanted with quercetin by doses of 25, 50 and 100 mg quercetin/kg B.W. daily, respectively, administrated with the same dose of IONPs for 30 days. IONPs induced significant increases in malondialdehyde (MDA) and significantly decreased reduced glutathione (GSH) and oxidized glutathione (GSSG). Consequently, IONPs significantly induced severe brain tissue injuries due to the iron deposition leading to oxidative alterations with significant increases in brain creatine phosphokinase (CPK) and acetylcholinesterase (AChE). Furthermore, IONPs induced significant reductions in brain epinephrine, serotonin and melatonin with the downregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and mitochondrial transcription factor A (mtTFA) mRNA expressions. IONPs induced apoptosis in the brain monitored by increases in caspase 3 and decreases in B-cell lymphoma 2 (Bcl2) expression levels. Quercetin supplementation notably defeated brain oxidative damages and in a dose-dependent manner. Therefore, quercetin supplementation during IONPs is highly recommended to gain the benefits of IONPs with fewer health hazards.


2012 ◽  
Vol 26 (2) ◽  
pp. 281-291 ◽  
Author(s):  
Kristin A. Anderson ◽  
Fumin Lin ◽  
Thomas J. Ribar ◽  
Robert D. Stevens ◽  
Michael J. Muehlbauer ◽  
...  

Abstract Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a member of the Ca2+/CaM-dependent protein kinase family that is expressed abundantly in brain. Previous work has revealed that CaMKK2 knockout (CaMKK2 KO) mice eat less due to a central nervous system -signaling defect and are protected from diet-induced obesity, glucose intolerance, and insulin resistance. However, here we show that pair feeding of wild-type mice to match food consumption of CAMKK2 mice slows weight gain but fails to protect from diet-induced glucose intolerance, suggesting that other alterations in CaMKK2 KO mice are responsible for their improved glucose metabolism. CaMKK2 is shown to be expressed in liver and acute, specific reduction of the kinase in the liver of high-fat diet-fed CaMKK2floxed mice results in lowered blood glucose and improved glucose tolerance. Primary hepatocytes isolated from CaMKK2 KO mice produce less glucose and have decreased mRNA encoding peroxisome proliferator-activated receptor γ coactivator 1-α and the gluconeogenic enzymes glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, and these mRNA fail to respond specifically to the stimulatory effect of catecholamine in a cell-autonomous manner. The mechanism responsible for suppressed gene induction in CaMKK2 KO hepatocytes may involve diminished phosphorylation of histone deacetylase 5, an event necessary in some contexts for derepression of the peroxisome proliferator-activated receptor γ coactivator 1-α promoter. Hepatocytes from CaMKK2 KO mice also show increased rates of de novo lipogenesis and fat oxidation. The changes in fat metabolism observed correlate with steatotic liver and altered acyl carnitine metabolomic profiles in CaMKK2 KO mice. Collectively, these results are consistent with suppressed catecholamine-induced induction of gluconeogenic gene expression in CaMKK2 KO mice that leads to improved whole-body glucose homeostasis despite the presence of increased hepatic fat content.


2016 ◽  
Vol 23 (2) ◽  
pp. 209-213 ◽  
Author(s):  
Zuhayer Ahmed ◽  
Indrajit Prasad ◽  
Hafizur Rahman ◽  
Jalil Ansari ◽  
Khaled Hassan

AbstractIntroduction: Though insulin has no upper limit in dosage, we do not encounter very high dose requirements too often. The reported case is the first in Bangladesh to require more than 1000 international units (IU) of subcutaneous insulin per day.Case presentation: A 44-year old male diabetic patient from Bangladesh presented with unusually uncontrolled diabetes mellitus due to extreme insulin resistance. Despite dramatic increase in insulin step by step up to 1110 IU of concomitant short and intermediate acting insulin per day by subcutaneous route, his blood glucose remained over 12 mmol/L persistently, in all the fasting, pre-prandial, postprandial and random samples. He was also treated with several oral hypoglycemic agents including metformin, vildagliptin, glimepiride, pioglitazone and miglitol along with insulin but blood glucose levels remained almost unchanged. However, intravenous infusion of insulin over 4 hours caused a plummet in the glucose level. His blood test for insulin autoantibody was negative.Conclusion: This paper provides a scope to review literatures on extreme subcutaneous insulin resistance and its management. It also reveals the limitations of management due to lack of facilities in an underdeveloped country, which hinders proper exploration to many medical issues.


PPAR Research ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Weimin He

The nuclear hormone receptor peroxisome proliferator activated receptor gamma (PPAR) is an important transcription factor regulating adipocyte differentiation, lipid and glucose homeostasis, and insulin sensitivity. Numerous genetic mutations of PPAR have been identified and these mutations positively or negatively regulate insulin sensitivity. Among these, a relatively common polymorphism of PPAR, Pro12Ala of PPAR2, the isoform expressed only in adipose tissue has been shown to be associated with lower body mass index, enhanced insulin sensitivity, and resistance to the risk of type 2 diabetes in human subjects carrying this mutation. Subsequent studies in different ethnic populations, however, have revealed conflicting results, suggesting a complex interaction between the PPAR2 Pro12Ala polymorphism and environmental factors such as the ratio of dietary unsaturated fatty acids to saturated fatty acids and/or between the PPAR2 Pro12Ala polymorphism and genetic factors such as polymorphic mutations in other genes. In addition, this polymorphic mutation in PPAR2 is associated with other aspects of human diseases, including cancers, polycystic ovary syndrome, Alzheimer disease and aging. This review will highlight findings from recent studies.


Author(s):  
SURENDRA BABU THANGACHI ◽  
VARSHA SRIRAM MOKHASI ◽  
SHABINA KOMATH CHENOLY

Objective: The objective of this study was to determine if there were any harmful effects of monosodium glutamate (MSG) on the liver of Wistar albino rats chronically at three different doses, namely, low, mid, and high doses equivalent to human consumption doses in developing countries. Methods: The Wistar albino rats (n=24) were divided into four groups, namely control, Low dose MSG (180 mg/kg), Mid dose MSG (360 mg/kg), and High dose MSG (720 mg/kg). At the end of the experimental period (120 days), animal blood was collected retro-orbitally to analyze the liver enzymes such as aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), Total protein, Albumin, and Total Bilirubin in blood serum. Lipid profiles, namely, Triglycerides, low-density lipoprotein (LDL), high-density lipoprotein (HDL), and Total cholesterol were subjected to analysis using blood serum. Results: Significant increase (p<0.05) in AST, ALT, ALP, and total bilirubin in serum of MSG induced low, mid, and high dose groups when compared to control group were recorded. There was a significant increase (p<0.05) in LDL, decrease in HDL, increase in total cholesterol and triglycerides of MSG-induced animal groups. Conclusion: The effects of MSG on serum liver enzymes and lipid profiles in this present animal study were not severely alarming even though the dosage was chronic which opens further discussion on the controversies revolving around MSG.


Sign in / Sign up

Export Citation Format

Share Document