scholarly journals Current strategies to treat tuberculosis

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2579 ◽  
Author(s):  
Anthony T. Podany ◽  
Susan Swindells

Tuberculosis (TB) has been a leading cause of death for more than a century. While effective therapies exist, treatment is long and cumbersome. TB control is complicated by the overlapping problems created by global inadequacy of public health infrastructures, the interaction of the TB and human immunodeficiency virus (HIV) epidemics, and the emergence of drug-resistant TB. After a long period of neglect, there is now significant progress in the development of novel treatment regimens for TB. Focusing on treatment for active disease, we review pathways to TB regimen development and the new and repurposed anti-TB agents in clinical development.

2021 ◽  
Author(s):  
Tyler S. Brown ◽  
Vegard Eldholm ◽  
Ola Brynildsrud ◽  
Magnus Osnes ◽  
Natalie Stennis ◽  
...  

1.ABSTRACTBackgroundDrug-resistant tuberculosis is a high priority threat to global public health. There are still critical gaps in understanding how novel drug-resistant M. tuberculosis strains emerge and, once emergent, what drives the differential propagation of certain epidemiologically-successful strains over others. This study sought to describe the joint evolutionary and epidemiological histories of a novel multidrug-resistant M. tuberculosis strain recently identified in the capital city of the Republic of Moldova (MDR Ural/4.2).MethodsUsing whole genome sequence data and Bayesian phylogenomic methods, we reconstruct the stepwise acquisition of drug-resistance mutations in the MDR Ural/4.2 strain, estimate its historical bacterial population size over time, and infer the migration history of this strain between Eastern European countries.ResultsWe infer that MDR Ural/4.2 likely evolved (via acquisition of rpoB S450L, which confers resistance to rifampin) in the early 1990s, during a period of social turmoil following Moldovan independence from the Soviet Union. This strain subsequently underwent substantial population size expansion in the early 2000s, at a time when national guidelines encouraged in hospital treatment of TB patients. We infer exportation of this strain and its INH-resistant ancestral precursor from Moldova to neighboring countries starting as early as 1985.ConclusionsOur findings underscore how public health practice and social determinants of health shape the conditions under which M. tuberculosis evolves, and demonstrates how historical changes in these conditions shape present-day challenges in TB control. These findings underscore the need for regional coordination in TB control across Eastern Europe.


2008 ◽  
Vol 15 (11) ◽  
pp. 1644-1649 ◽  
Author(s):  
Brian L. Anderson ◽  
Ryan J. Welch ◽  
Christine M. Litwin

ABSTRACT Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a major world disease, with approximately 9 million new cases each year. Identification and treatment of active disease are essential for TB control. Serology may offer increased detection of active disease in patients with a positive tuberculin skin test (TST) or QuantiFERON-TB (QFT-G). The InBios Active TbDetect immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA), IBL M. tuberculosis IgG ELISA, and Anda Biologics TB ELISAs were evaluated for the ability to detect M. tuberculosis antibodies in patients with active disease. Agreement, sensitivity, and specificity for each ELISA were determined and compared to those for culture or amplified direct detection and M. tuberculosis low-risk control patients. The InBios Active TbDetect ELISA had an agreement of 96.2%, a sensitivity of 83.3%, and a specificity of 98.9%. The IBL M. tuberculosis ELISA had an agreement of 84.0%, a sensitivity of 5.6%, and a specificity of 100.0%. The agreement, sensitivity, and specificity of the Anda Biologics TB ELISA were 74.2%, 83.3%, and 72.0%, respectively. The sensitivity for detecting M. tuberculosis antibodies in human immunodeficiency virus-associated TB was 50% for both the InBios Active TbDetect ELISA and the Anda Biologics TB ELISA and 0% for the IBL M. tuberculosis ELISA. The positivity rates for InBios Active TbDetect ELISA, IBL M. tuberculosis ELISA, and Anda Biologics TB ELISA in latently infected individuals positive by TST and/or QFT-G were 5.1%, 0.0%, and 30.8%, respectively. It can be concluded that the InBios Active TbDetect IgG ELISA is superior to the other ELISAs in accurately detecting active TB.


Author(s):  
Silvia Maria De Almeida

Background and Objectives: Knowledge about species diversity of non-tuberculous mycobacteria (NTM) and the frequency of tuberculosis (TB) is an important issue in rural-urban regions such as Piauí (northeast of Brazil), of low incidence rate of TB , can help to improve diagnosis and prevention strategies. The aim of this study is to examine some epidemiological aspects and the frequency of Mycobacterium tuberculosis (Mtb) and NTM isolated at the central public health reference laboratory, Dr. Costa Alvarenga, Piauí (LACEN-PI). Methods: Data records of all mycobacterosis and tuberculosis cases from January 2014 to March 2015 were analyzed. Results : Of the 20% (142/706) positive growths, 70% (99) were Mtb and 10% NTM. The remainde was of inadequate clinical samples, not allowing the identification of even the suspected NTM. The most frequent clinical form was pulmonary with TB patients younger than those infected with NTM (p = 0.001), the majority living in Teresina (52%). NTMs identified were M. abscessus (36%), M. avium, M. intracellulare, Mycobacterium sp. (14% each) and M. asiaticum, M. szulgai, M. kansasii 7% (each). Mtb drug resistance (7.8%) and TB co-infection with the human immunodeficiency virus (HIV-TB) found to be high (49%, 19/39) . Conclusion: The frequencies of Mtb infection, drug resistance and HIV-TB co-infection are still underestimated and failures in the identification of NTM may decrease the actual frequency of these infections. Therefore, there is a need for improvements in TB control and in the diagnosis of NTMs in Piauí.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Mitchell A. Yakrus ◽  
Beverly Metchock ◽  
Angela M. Starks

Crucial to interrupting the spread of tuberculosis (TB) is prompt implementation of effective treatment regimens. We evaluated satisfaction, comfort with interpretation, and use of molecular results from a public health service provided by the Centers for Disease Control and Prevention (CDC) for the molecular detection of drug resistantMycobacterium tuberculosiscomplex (MTBC). An electronic survey instrument was used to collect information anonymously from U.S. Public Health Laboratories (PHL) that submitted at least one isolate of MTBC to CDC from September 2009 through February 2011. Over 97% of those responding expressed satisfaction with the turnaround time for receiving results. Twenty-six PHL (74%) reported molecular results to healthcare providers in less than two business days. When comparing the molecular results from CDC with their own phenotypic drug susceptibility testing, 50% of PHL observed discordance. No respondents found the molecular results difficult to interpret and 82% were comfortably discussing them with TB program officials and healthcare providers. Survey results indicate PHL were satisfied with CDC’s ability to rapidly provide interpretable molecular results for isolates of MTBC submitted for determination of drug resistance. To develop educational materials and strategies for service improvement, reasons for discordant results and areas of confusion need to be identified.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Pouya Reshadi ◽  
Fatemeh Heydari ◽  
Reza Ghanbarpour ◽  
Mahboube Bagheri ◽  
Maziar Jajarmi ◽  
...  

Abstract Background Transmission of antimicrobial resistant and virulent Escherichia coli (E. coli) from animal to human has been considered as a public health concern. This study aimed to determine the phylogenetic background and prevalence of diarrheagenic E. coli and antimicrobial resistance in healthy riding-horses in Iran. In this research, the genes related to six main pathotypes of E. coli were screened. Also, genotypic and phenotypic antimicrobial resistance against commonly used antibiotics were studied, then phylo-grouping was performed on all the isolates. Results Out of 65 analyzed isolates, 29.23 % (n = 19) were determined as STEC and 6.15 % (n = 4) as potential EPEC. The most prevalent antimicrobial resistance phenotypes were against amoxicillin/clavulanic acid (46.2 %) and ceftriaxone (38.5 %). blaTEM was the most detected resistance gene (98.4 %) among the isolates and 26.15 % of the E. coli isolates were determined as multi-drug resistant (MDR). Three phylo-types including B1 (76.92 %), A (13.85 %) and D (3.08 %) were detected among the isolates. Conclusions Due to the close interaction of horses and humans, these findings would place emphasis on the pathogenic and zoonotic potential of the equine strains and may help to design antimicrobial resistance stewardship programs to control the dissemination of virulent and multi-drug resistant E. coli strains in the community.


2004 ◽  
Vol 78 (4) ◽  
pp. 1718-1729 ◽  
Author(s):  
Haili Zhang ◽  
Yan Zhou ◽  
Cecily Alcock ◽  
Tara Kiefer ◽  
Daphne Monie ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1)-infected individuals who develop drug-resistant virus during antiretroviral therapy may derive benefit from continued treatment for two reasons. First, drug-resistant viruses can retain partial susceptibility to the drug combination. Second, therapy selects for drug-resistant viruses that may have reduced replication capacities relative to archived, drug-sensitive viruses. We developed a novel single-cell-level phenotypic assay that allows these two effects to be distinguished and compared quantitatively. Patient-derived gag-pol sequences were cloned into an HIV-1 reporter virus that expresses an endoplasmic reticulum-retained Env-green fluorescent protein fusion. Flow cytometric analysis of single-round infections allowed a quantitative analysis of viral replication over a 4-log dynamic range. The assay faithfully reproduced known in vivo drug interactions occurring at the level of target cells. Simultaneous analysis of single-round infections by wild-type and resistant viruses in the presence and absence of the relevant drug combination divided the benefit of continued nonsuppressive treatment into two additive components, residual virus susceptibility to the drug combination and selection for drug-resistant variants with diminished replication capacities. In some patients with drug resistance, the dominant circulating viruses retained significant susceptibility to the combination. However, in other cases, the dominant drug-resistant viruses showed no residual susceptibility to the combination but had a reduced replication capacity relative to the wild-type virus. In this case, simplification of the regimen might still allow adequate suppression of the wild-type virus. In a third pattern, the resistant viruses had no residual susceptibility to the relevant drug regimen but nevertheless had a replication capacity equivalent to that of wild-type virus. In such cases, there is no benefit to continued treatment. Thus, the ability to simultaneously analyze residual susceptibility and reduced replication capacity of drug-resistant viruses may provide a basis for rational therapeutic decisions in the setting of treatment failure.


Sign in / Sign up

Export Citation Format

Share Document