scholarly journals WEAR-RESISTANCE INCREASE IN SURFACES OF SPHERICAL SLIDING BEARINGS

2016 ◽  
Vol 2016 (4) ◽  
pp. 15-21
Author(s):  
Александр Горленко ◽  
Aleksandr Gorlenko ◽  
Александр Ерохин ◽  
Aleksandr Erokhin

A technology of plasma finishing strengthening with multilayer nanocoating of Si-O-C-N system in the context of strengthening of friction surfaces in spherical sliding bearings is considered. The tribological characteristics of an applied wear-resistant antifriction coating which condition on wear-resistance increase in spherical sliding bearings are investigated.

2016 ◽  
Vol 1 (8) ◽  
pp. 42-48
Author(s):  
Александр Горленко ◽  
Aleksandr Gorlenko

The technology of finish plasma strengthening (FPS) with the multi-layer nano-coating of the Si-O-CN system as applied to the friction surface strengthening in spherical journal bearings is considered. This method relates to the processes of tubeless chemical precipitation of coatings at atmosphere pressure with the use of volatile fluids of element-organic compounds and gas environment with the simultaneous activation of a surface by electroarc plasma. The essence and distinguishing features of FPS are analyzed. Tribological characteristics of an applied wear resistant antifriction coating are investigated which stipulate for wear resistance increase in spherical journal bearings.


2019 ◽  
Vol 49 (11) ◽  
pp. 800-805
Author(s):  
A. O. Gorlenko ◽  
S. V. Davydov ◽  
M. Yu. Shevtsov ◽  
D. A. Boldyrev

2017 ◽  
Vol 2 (2) ◽  
pp. 19-24 ◽  
Author(s):  
Анатолий Суслов ◽  
Anatoliy Suslov ◽  
Михаил Шалыгин ◽  
Mikhail Shalygin

In the paper there is considered a problem of wear-resistance increase in parts operating in hydrogen environment. The dependence of friction surface wear taking into account their sub-roughness and hydrogen existence is shown. A technology for a friction couple wear-resistance increase is offered including surface layer granularity decrease, the reduction of hydrogen content in an inter-grain space and the introduction in the structure of parts surface layers the elements allowing filling up an inter-grain space. The results of comparative wear tests for different technologies for wear-resistance increase are shown. It is defined that the technology offered allows increasing wear-resistance in friction surfaces in machine parts. A method for account of hydrogen existence in an inter-grain space is offered and a reasonable method for obtaining a numerical value of a factor taking into account hydrogen presence used for theoretical computations.


Alloy Digest ◽  
2014 ◽  
Vol 63 (3) ◽  

Abstract Swebor 400 (hardness 400 HBW) is a high-strength steel with good wear resistant qualities. This alloy is used to endure conditions of extra-heavy wear and when great strength and good weldability is required. This datasheet provides information on composition, hardness, tensile properties, and bend strength as well as fracture toughness. It also includes information on wear resistance as well as forming, machining, and joining. Filing Code: CS-181. Producer or source: Swebor Stål Svenska AB.


Alloy Digest ◽  
2012 ◽  
Vol 61 (2) ◽  

Abstract RUUKKI RAEX 300 (typical yield strength 900 MPa) is part of the Raex family of high-strength and wear-resistant steels with favorable hardness and impact toughness to extend life and decrease wear in structural components. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness. It also includes information on wear resistance as well as forming, machining, and joining. Filing Code: SA-643. Producer or source: Rautaruukki Corporation.


Alloy Digest ◽  
2014 ◽  
Vol 63 (7) ◽  

Abstract XAR 400 (No. 1.8714) is a wear-resistant structural steel as heavy plate that is normalized or normalized rolled plate. XAR (extra abrasion resistant) steels are solutions for applications where wear is a key factor. This datasheet provides information on composition, hardness, and tensile properties as well as fracture toughness. It also includes information on wear resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-704. Producer or source: ThyssenKrupp Steel Europe AG.


Author(s):  
Dmitriy B. Slinko ◽  
Vyacheslav A. Denisov ◽  
Dmitriy A. Dobrin ◽  
Andrey V. Afanas’yev ◽  
Pavel M. Kislov

Reducing operating costs during soil processing and increasing the wear resistance of parts and components is an important condition for reducing the cost of agricultural products, increasing its efficiency and competitiveness. The development of materials with increased wear resistance and new effective technologies for strengthening working bodies in their manufacture is now becoming an urgent task. (Research purpose) The research purpose is increasing the wear resistance of the working bodies of soil-processing machines by electric arc surfacing. (Materials and methods) During the experimental study, it has been performed testing of modes and surfacing of a pilot batch of working bodies from Kverneland for field tests in VIM on an automated installation for electric arc surfacing. Authors used eutectic CastolinEnDotec DO*30 powder wire with a diameter of 1.2 millimeters and a boron content of up to 4 percent for surfacing wear-resistant rollers, which allows to obtain wear-resistant rollers with a hardness of up to 65 HRC without pores and cracks. (Results and discussion) It has been revealed that hardened ploughshares that have passed field tests are subject to lower wear rates compared to non-hardened ones. It was found that when operating time is 24.785 hectares per ploughshare, the wear of the linear size of the cutting edge along the width of hardened ploughshares is on average up to 10-11 millimeters less than that of non-hardened ones. It was found that when processing 228 hectares, the wear of the linear size of the cutting edge along the width of hardened bits is on average up to 9-10 millimeters less than that of non-hardened ones. (Conclusions) The technology of surfacing with intermittent wear-resistant rollers provides an increase in the efficiency of hardening of Kverneland working bodies according to the criterion of wear resistance by an average of 20-30 percent. The adjusted technological parameters of the surfacing process will reduce the wear rate and increase the service life of the blade part of the working bodies, as well as reduce the amount of surfaced material by an average of 60 percent. The continuation of work on strengthening the working bodies should be aimed at changing the surfacing scheme and choosing a cheaper domestic cored wire.


2019 ◽  
pp. 175-181
Author(s):  
A. I. Kovtunov ◽  
T. V. Semistenova ◽  
A. M. Ostryanko

The paper offers technology of argon-arc surfacing with titanium wire in order to form heat and wear resistant coating based on the titanium cuprides. The influence of surfacing modes on the chemical compound and structure of formed coatings is determined. The wear resistance and heat resistance at 600°C and 800°C were researched for copper–titanium coating with 8–63% titanium.


2012 ◽  
Vol 271-272 ◽  
pp. 3-7
Author(s):  
Long Wei ◽  
Zong De Liu ◽  
Xin Zhi Li ◽  
Ming Ming Yuan ◽  
Cheng Yuan Zhong

Cr3C2-NiCr has high quality of wear resistant properties and is widely used in abrasive environment. In this paper, Cr3C2-NiCr coating was prepared on 45 steel by laser cladding technology. Analysis and research of the coatings were achieved by SEM and XRD to determine the main component and the different region on coatings. The hardness and the element component were investigated by micro-hardness tester and EDS. Abrasion tests were performed to contrast the wear resistance of two materials. The results indicate that the hardness of the coatings is nearly 3 times as the substrate. The coatings are well combined with the substrate and the phase of Cr3C2 has a large proportion in the coatings. Abrasion tests show that the average of wear rate on substrate is 5.2 times as the coatings.


Sign in / Sign up

Export Citation Format

Share Document