The Study of Oral Findings, Oxidative Stress and Antioxidant Vitamin E in Serum and Saliva of Crohn’s Patients on Azathioprine Monotherapy and Those on Combination of Anti-TNF-α plus Azathioprine

2018 ◽  
Vol 30 (1) ◽  
pp. 39-45
Author(s):  
Zainab Kh. Abbas ◽  
Taghreed F. Zaidan
2002 ◽  
Vol 227 (9) ◽  
pp. 823-829 ◽  
Author(s):  
Jin Zhang ◽  
Yingying Liu ◽  
Jiaqi Shi ◽  
Douglas F. Larson ◽  
Ronald Ross Watson

Side-stream cigarette smoke (SSCS), a major component of secondhand smoke, induces reactive oxygen species, which promote oxidative damage in tissues and organs. Inflammatory cytokines play an important role in the pathogenesis of atherosclerosis and heart failure. The present 4-month study examined the effect of various chronic SSCS exposure levels on splenic inflammatory cytokine secretion, heart contractile function, and pathology at 60- and 120-min per day, 5 days per week, for a total of 16 weeks. Tissue vitamin E level and lipid peroxide production also were tested to estimate the oxidative stress. The study found that the pro-inflammatory cytokines, interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β, significantly increased in 120-min SSCS-exposed mice. Decreased stroke volume and increased peripheral arterial resistance were observed in mice exposed to 120-min SSCS per day. Heart pathology was only found in 120-min SSCS-exposed mice. Cardiac and hepatic antioxidant vitamin E levels were decreased as a result of oxidative stress. Hepatic lipid peroxides were Increased upon 60-min SSCS exposure. The data also demonstrated that the cardiac α-tocopherol level has a strong correlation with stroke volume; splenic IL-1β has a strong negative correlation with stroke volume; splenic TNF-α has a very strong negative correlation with stroke volume. In conclusion, SSCS exposure induced systemic inflammatory responses. SSCS exposure also accentuated systemic lipid peroxidation with depletion of cardiac and hepatic antioxidant vitamin E level. Finally, SSCS exposure at 120 min per day decreased stroke volume and increased vascular resistance. Systemic IL-1 β and TNF-α production are responsible for heart contractile dysfunction. Free radicals may be responsible for the progression to heart contractile dysfunction induced, in part, by SSCS. Oxidized lipoprotein could contribute to the vascular functional changes. Exploring the mechanism of vascular dysfunction in mice is warranted. A more precise quantification of the smoking exposure dose in mice needs to be determined as well.


2007 ◽  
Vol 292 (5) ◽  
pp. F1404-F1410 ◽  
Author(s):  
You-Lin Tain ◽  
Gary Freshour ◽  
Anna Dikalova ◽  
Kathy Griendling ◽  
Chris Baylis

Chronic kidney disease is accompanied by nitric oxide (NO) deficiency and oxidative stress, which contribute to progression. We investigated whether the antioxidant vitamin E could preserve renal function and NO bioavailability and reduce oxidative stress in the 5/6th nephrectomy (NX) rat model. We studied the following three groups of male Sprague-Dawley rats: sham ( n = 6), 5/6 NX control ( n = 6), and 5/6 NX treated with vitamin E (5,000 IU/kg chow; n = 5). The 5/6 NX group showed increased severity of glomerulosclerosis vs. sham, and this was ameliorated by vitamin E therapy. Both 5/6 NX groups showed similar elevations in plasma creatinine and proteinuria and decreased 24-h creatinine clearance compared with sham. There was increased NADPH-dependent superoxide production in 5/6 NX rats vs. sham that was prevented by vitamin E. Total NO production was similarly reduced in both 5/6 NX groups. There was unchanged abundance of endothelial nitric oxide synthesis (NOS) in renal cortex and medulla and neuronal (n) NOS in medulla. However, in kidney cortex, 5/6 NX rats had lower nNOS abundance than sham, which was restored by vitamin E. An increased plasma asymmetric dimethylarginine occurred with 5/6 NX associated with decreased renal dimethylarginine dimethylaminohydrolase activity and increased type 1 protein arginine methyltransferase expression.


Author(s):  
Manouchehr Iranparvar Alamdari ◽  
Shahram Habibzadeh ◽  
Bita Shahbazzadegan ◽  
Mohammad Mazani ◽  
Amir Bigdeli ◽  
...  

Background: Diabetes type 2 associates with increased oxidative stress and reduced antioxidant. Vitamin E supplementation reduces oxidative stress in diabetic patients. We intended to measure the level of this vitamin in these patients to assess its relationship in control of patients' diabetes by designing present study.Methods: This is a descriptive and cross-sectional study and carried out on 186 patients with diabetes type 2 diagnosis. The levels of HbA1C (measured by HPLC method), TG, cholesterol, HDL, LDL and Cr were measured, and given to that the level of HbA1C lower than 7 (controlled group) and or more than 7 (uncontrolled group), patients were divided in two groups. Were designed a check list involved questions such as age and information of each patient associated with measured vitamin E level were entered into the check list and after that were analyzed data.Results: In the existing study 186 diabetic patients were examined. From within examined patients, 129 (69.3%) were women and the rest were men and average patients age were 53.33±11.2. In this study was observed there was no direct correlation between the level of cholesterol (p=0.284), LDL (p=0.538( and HDL (p=0.362) with controlled DM II in patients while in uncontrolled diabetic the triglyceride levels was more than those with controlled blood sugar significantly (p=0.046(. The average vitamin E level in patients was 1488.6±692.2 nmol/l its lowest level 114.4 nmol/l and the highest level was 6235 nmol/l.Conclusions: The results of this study show that the vitamin E levels no significant difference between control and non-control diabetic patients.


2000 ◽  
Vol 279 (5) ◽  
pp. H2176-H2187 ◽  
Author(s):  
Elena E. Ustinova ◽  
Carolyn J. Barrett ◽  
Shu-Yu Sun ◽  
Harold D. Schultz

We investigated the effects of diabetes mellitus and antioxidant treatment on the sensory and reflex function of cardiac chemosensory nerves in rats. Diabetes was induced by streptozotocin (STZ; 85 mg/kg ip). Subgroups of sham- and STZ-treated rats were chronically treated with an antioxidant, vitamin E (60 mg/kg per os daily, started 2 days before STZ). Animals were studied 6–8 wk after STZ injection. We measured renal sympathetic nerve activity (RSNA), mean arterial blood pressure (MABP), and cardiac vagal and sympathetic afferent activities in response to stimulation of chemosensitive sensory nerves in the heart by epicardial application of capsaicin (Caps) and bradykinin (BK). In cardiac sympathetic-denervated rats, Caps and BK (1–10.0 μg) evoked a vagal afferent mediated reflex depression of RSNA and MABP, which was significantly blunted in STZ-treated rats ( P < 0.05). In vagal-denervated rats, Caps and BK (1–10.0 μg) evoked a sympathetic afferent-mediated reflex elevation of RSNA and MABP, which also was significantly blunted in STZ-treated rats ( P< 0.05). Chronic vitamin E treatment effectively prevented these cardiac chemoreflex defects in STZ-treated rats without altering resting blood glucose or hemodynamics. STZ-treated rats with insulin replacement did not exhibit impaired cardiac chemoreflexes. In afferent studies, Caps and BK (0.1 g-10.0 μg) increased cardiac vagal and sympathetic afferent nerve activity in a dose-dependent manner in sham-treated rats. These responses were significantly blunted in STZ-treated rats. Vitamin E prevented the impairment of afferent discharge to chemical stimulation in STZ rats. The following were concluded: STZ-induced, insulin-dependent diabetes in rats extensively impairs the sensory and reflex properties of cardiac chemosensitive nerve endings, and these disturbances can be prevented by chronic treatment with vitamin E. These results suggest that oxidative stress plays an important role in the neuropathy of this autonomic reflex in diabetes.


2021 ◽  
Author(s):  
Yanjun Gao ◽  
Shumin Duan ◽  
Lizhi Lyu ◽  
Weixing Xu ◽  
Xiaxian Ou ◽  
...  

Abstract BackgroundTitanium dioxide (TiO2) with nanofractions is increasingly applied in food products as a food additive, which makes consumers under the health risks of titanium dioxide nanoparticles (TiO2-NPs) oral exposure. The recent ban of food additive TiO2 (E171) use in France aggravated public controversy on safety of orally ingesting TiO2-NPs. This work aimed to determine biological effects of TiO2-NPs (38.3 ± 9.3) oral consumption (100 mg/kg bw, 10 days) on TNBS-induced colitis mice and healthy mice, and the additional vitamin E administration was also conducted to explore the possible mechanism of TiO2-NPs on colitis development.ResultsOral consumption of TiO2-NPs exacerbated oxidative stress status in colitis mice by decreasing the colonic glutathione (GSH) and total glutathione (T-GSH) levels, however, TiO2-NPs administration repaired the dysbacteriosis of colitis mice, and downregulated the Toll-like receptors (TLRs), nuclear factor kappa-B (NF-κB) signal pathway and inflammatory factor (IL-1β and TNF-α) transcription levels in colon tissue, which finally decreased the TNF-α expression level and participated in the mitigation of colitis symptoms. Moreover, further vitamin E intervention after TiO2-NPs consumption could relieve the oxidative stress status (mainly by scavenging reactive oxygen species, ROS) and the inflammatory factor over-transcription in colonic epithelium of colitis mice, but the effect of TiO2-NPs on dysbacteriosis repair would not be further changed by Vitamin E. At last, TiO2-NPs induced oxidative stress status and increased NF-κB signal transcription level in colonic epithelium, which increased daily disease activity index (DAI) score and caused mild mucosal inflammatory cell infiltrate in healthy mice. ConclusionOur present work showed that oral TiO2-NPs administration indeed induced oxidative stress and made an adverse effect on the development of colitis, but TiO2-NPs could also downregulate the NF-κB signal transduction level by repairing gut dysbacteriosis, which made a predominant role in alleviating colitis. On the other hand, it should also be noticed that TiO2-NPs oral ingestion caused potential colonic inflammation risks in healthy mice.


2020 ◽  
Vol 71 (6) ◽  
pp. 230-237
Author(s):  
Adriana Dinu ◽  
Bogdana Virgolici ◽  
Daniela Miricescu ◽  
Alexandra Totan ◽  
Elvira Gagniuc ◽  
...  

Obesity is associated with renal lipomatosis, inflammation and oxidative stress. Vitamin E is a liposoluble antioxidant vitamin and PLGA (polylactic-CO-glycolic acid) nanoparticles (NPs) represent a delivery carrier of this vitamin to the abdominal viscera. The aim of this study is to evaluate the renal and systemic effects of PLGA- NPs loaded with vitamin E in high fat diet Wistar rats. Young heathy Wistar male rats (3months old, n=20) were fed for 4 weeks either with standard diet or with high caloric/fat diet. These two experimental groups were divided in two subgroups and for the following 21 days, one group received PLGA-NPs loaded with vitamin E (1 mg/kg) body and the other didn�t. Metabolic serum parameters, oxidative stress markers ( malondialdehyde, MDA and total thiols) from kidney homogenates were measured by spectrophotometric methods. Hematoxylin-eosin stain histopathologic examination of kidneys was performed. The obesogenic diet increased the serum levels for triglycerides (p[0.001) and renal function markers: urea (p[0.02), creatinine (p[0.02) and cystatin (p[0.01). The treatment reduced the kidney inflammation, prevented tubulonephrosis damage and improved the renal oxidative stress markers (p[0.05) in the high fat diet group. In conclusion, PLGA-NPs loaded with vitamin E had renoprotective effect in high fat diet Wistar rats.


2012 ◽  
Vol 29 (2) ◽  
pp. 202-208 ◽  
Author(s):  
Abdulrahman L Al-Malki ◽  
Said S Moselhy

Nicotine is a major pharmacologically active and addictive component of tobacco smoke, which is regarded to be a primary risk factor in the development of cardiovascular and pulmonary diseases. Epicatechin is one of the most potent antioxidants present in the human diet. Particularly high levels of this compound are found in tea, apples and chocolate. It has been reported that tea extracts and/or its constituents have antibacterial, antiviral, antioxidative, antitumor and antimutagenic activities. Vitamin E is a major lipid-soluble antioxidant vitamin and free radical scavenger, presents as an integral component of cellular membranes and has important biological functions. The primary mechanism by which vitamin E is proposed to prevent cancer is through their antioxidant properties. The goal of this study is to evaluate the effect of epicatechin alone or combined with vitamin E in inhibiting the oxidative stress induced by nicotine in rats. Results obtained indicated that there was a significant elevation in the levels of malondialdhyde (MDA) in nicotine injected rats. The combined treatment (epicatechin + Vit E) group showed a potential reduction of these parameters more than individual treatment. The activities of superoxide dismutase, catalase and glutathione peroxidase were found significantly higher in combined treated than untreated rats. In nicotine group, a negative significant correlation between reduced glutathione and MDA ( r = −0.92) was observed. In conclusion, these results suggested that the supplementation of diet with epicatechin and vitamin E provided antioxidant defense with strong chemopreventive activity against nicotine-induced carcinogenesis.


Dose-Response ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 155932582110113
Author(s):  
Ahlam Alhusaini ◽  
Shahad Alghilani ◽  
Waad Alhuqbani ◽  
Iman H. Hasan

Background and Objective: Mercury is one of the most harmful heavy metals and its toxicity causes severe multi-organ dysfunction. This study was designed to explore novel molecular pathways involved in the hepatoprotective effect of vitamin E (Vit-E) and Lactobacillius plantarum (Lac-B) against mercury toxicity.[Formula: see text] Method: Acute hepatotoxicity was induced by administration of high dose of mercuric chloride (HgCl2) in male rats, Vit-E or/and Lac-B were given along with HgCl2 for 2 weeks. The effects of those antioxidants were studied focusing on their anti-apoptotic, anti-oxidative stress and anti-inflammatory eficacies. Histopathological examinations were also conducted. Results: The administration of HgCl2 induced liver injury which manifested by elevation in serum ALT and AST. Liver MDA, caspase-3 and TNF-α levels were markedly increased; whereas, GSH level and SOD activity were declined. HgCl2 significantly elevated the expressions of hepatic CHOP, GPR87, NF-κB and mTOR. Histopathological examination revealed massive hepatocyte degeneration following HgCl2 administration. Treatment with Vit-E or/and Lac-B restored the normal levels of the previously mentioned parameters, as well as improved hepatic architecture. Conclusion: Vit-E and Lac-B provided protective effect against HgCl2-induced hepatotoxicity via reduction of oxidative stress and inflammation, and downregulation of CHOP, GPR87, NF-κB and mTOR proteins’ expressions.


2019 ◽  
Vol 70 (1) ◽  
pp. 78-83
Author(s):  
Alexandra Totan ◽  
Daniela Gabriela Balan ◽  
Daniela Miricescu ◽  
Radu Radulescu ◽  
Iulia Ioana Stanescu ◽  
...  

Oxidative stress (OS) plays an important role in NAFLD molecular mechanism. Nanoencapsulation represents a novel strategy to enhance therapeutic potential of conventional drugs. Our study analyses the encapsulated vitamin E effect on lipid metabolism and oxidative stress biomarkers in NAFLD rats. Animals were divided into 3 groups : G1 - the normal diet group; G2- the high caloric diet group ; G3 - high-caloric diet group receiving PLGA-vit E, 50 mg / kg. Serum advanced human oxidative protein (AOPP), total antioxidant capacity (TAC) and vitamin E were analysed using ELISA technique. Our results showed significant increase of G2 GPT, ALP, GGT, TG, glucose, TC and AOPP, versus G1 ( P [ 0.05) and a significant decrease of G2 serum TAC and vitamin E versus G1 results ( p = 0.01 and 0.01). Vitamin E nanoparticles (G3) caused a significant increase of TAC and significant decrease of serum AOPP, versus G2 (p [ 0.01). Results showed a significant reduction of GPT, GGT, ALP, TG and total cholesterol ( p [0.05) in G3 versus G2. PLGA nanoparticles should be considered an attractive and promising alternative to improve the bioavailability and biological activity of vitaminE.


Sign in / Sign up

Export Citation Format

Share Document