10115 Estimation method of residual stress in stainless steel using micro indentation test

2014 ◽  
Vol 2014.20 (0) ◽  
pp. _10115-1_-_10115-2_
Author(s):  
Ryota KUSANO ◽  
Tomohiro HIYOSHI ◽  
Akio YONEZU
Author(s):  
J. M. Tannenbaum ◽  
B. S.-J. Kang ◽  
M. A. Alvin

In this research, a load-based depth-sensing micro-indentation method for spallation detection and damage assessment of thermal barrier coating (TBC) materials is presented. A non-destructive multiple loading/partial unloading testing methodology was developed where in stiffness responses of TBC coupons subjected to various thermal cyclic loading conditions were analyzed to predict the spallation site and assess TBC degradation state. The measured stiffness responses at various thermal loading cycles were used to generate time-series color maps for correlation with accumulation of TBC residual stress states. The regions with higher stiffness responses can be linked to a rise in out-of-plane residual stress located near or at the yttria stabilized zirconia (YSZ)/thermally grown oxide (TGO) interface, which is ultimately responsible for initiating TBC spallation failure. A TBC thermal exposure testing plan was carried out where time-series cross-sectional microstructural analyses of damage accumulation and spallation failure associated with the evolution of bond coat/TGO/top coat composite (e.g. thickness, ratcheting, localized oxidations, etc.) of air plasma sprayed (APS) TBCs were evaluated and correlated to the measured stiffness responses at various thermal cycles. The results show that the load-based micro-indentation test methodology is capable of identifying the spallation site(s) before actual occurrence. This micro-indentation technique can be viewed as a viable non-destructive evaluation (NDE) technique for determining as-manufactured and process-exposed TBCs. This technique also shows promise for the development of a portable instrument for on-line, in-situ spallation detection/prediction of industrial-size TBC turbine components.


1992 ◽  
Vol 25 (3) ◽  
pp. 130 ◽  
Author(s):  
P. Palanichamy ◽  
A. Joseph ◽  
K. V. Kasiviswanathan ◽  
D. K. Bhattacharya ◽  
Baldev Raj

Author(s):  
Ying Hong ◽  
Xuesheng Wang ◽  
Yan Wang ◽  
Zhao Zhang ◽  
Yong Han

Stainless steel 304 L tubes are commonly used in the fabrication of heat exchangers for nuclear power stations. The stress corrosion cracking (SCC) of 304 L tubes in hydraulically expanded tube-to-tubesheet joints is the main reason for the failure of heat exchangers. In this study, 304 L hydraulically expanded joint specimens were prepared and the residual stresses of a tube were evaluated with both an experimental method and the finite element method (FEM). The residual stresses in the outer and inner surfaces of the tube were measured by strain gauges. The expanding and unloading processes of the tube-to-tubesheet joints were simulated by the FEM. Furthermore, an SCC test was carried out to verify the results of the experimental measurement and the FEM. There was good agreement between the FEM and the experimental results. The distribution of the residual stress of the tube in the expanded joint was revealed by the FEM. The effects of the expansion pressure, initial tube-to-hole clearance, and yield strength of the tube on the residual stress in the transition zone that lay between the expanded and unexpanded region of the tube were investigated. The results showed that the residual stress of the expanded joint reached the maximum value when the initial clearance was eliminated. The residual stress level decreased with the decrease of the initial tube-to-hole clearance and yield strength. Finally, an effective method that would reduce the residual stress without losing tightness was proposed.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 629
Author(s):  
Nana Kwabena Adomako ◽  
Sung Hoon Kim ◽  
Ji Hong Yoon ◽  
Se-Hwan Lee ◽  
Jeoung Han Kim

Residual stress is a crucial element in determining the integrity of parts and lifetime of additively manufactured structures. In stainless steel and Ti-6Al-4V fabricated joints, residual stress causes cracking and delamination of the brittle intermetallic joint interface. Knowledge of the degree of residual stress at the joint interface is, therefore, important; however, the available information is limited owing to the joint’s brittle nature and its high failure susceptibility. In this study, the residual stress distribution during the deposition of 17-4PH stainless steel on Ti-6Al-4V alloy was predicted using Simufact additive software based on the finite element modeling technique. A sharp stress gradient was revealed at the joint interface, with compressive stress on the Ti-6Al-4V side and tensile stress on the 17-4PH side. This distribution is attributed to the large difference in the coefficients of thermal expansion of the two metals. The 17-4PH side exhibited maximum equivalent stress of 500 MPa, which was twice that of the Ti-6Al-4V side (240 MPa). This showed good correlation with the thermal residual stress calculations of the alloys. The thermal history predicted via simulation at the joint interface was within the temperature range of 368–477 °C and was highly congruent with that obtained in the actual experiment, approximately 300–450 °C. In the actual experiment, joint delamination occurred, ascribable to the residual stress accumulation and multiple additive manufacturing (AM) thermal cycles on the brittle FeTi and Fe2Ti intermetallic joint interface. The build deflected to the side at an angle of 0.708° after the simulation. This study could serve as a valid reference for engineers to understand the residual stress development in 17-4PH and Ti-6Al-4V joints fabricated with AM.


2006 ◽  
Vol 524-525 ◽  
pp. 697-702 ◽  
Author(s):  
Shinobu Okido ◽  
Hiroshi Suzuki ◽  
K. Saito

Residual stress generated in Type-316 austenitic stainless steel butt-weld jointed by Inconel-182 was measured using a neutron diffraction method and compared with values calculated using FEM analysis. The measured values of Type-316 austenitic stainless steel as base material agreed well with the calculated ones. The diffraction had high intensity and a sharp profile in the base metal. However, it was difficult to measure the residual stress at the weld metal due to very weak diffraction intensities. This phenomenon was caused by the texture in the weld material generated during the weld procedure. As a result, this texture induced an inaccurate evaluation of the residual stress. Procedures for residual stress evaluation to solve this textured material problem are discussed in this paper. As a method for stress evaluation, the measured strains obtained from a different diffraction plane with strong intensity were modified with the ratio of the individual elastic constant. The values of residual stress obtained using this method were almost the same as those of the standard method using Hooke’s law. Also, these residual stress values agreed roughly with those from the FEM analysis. This evaluation method is effective for measured samples with a strong texture like Ni-based weld metal.


2015 ◽  
Vol 659 ◽  
pp. 623-627 ◽  
Author(s):  
Cherdpong Jomdecha ◽  
Isaratat Phung-On

The objective of this paper is an analysis of statistical discreteness and measurement capability of an eddy-current measurement system for residual stress assessment in stainless steel Grade 304 (SS304). Cylindrical specimens with 50 mm in diameter and 12 mm thickness were prepared to generate residual stress by Resistance Spot Welding at which the welding currents were set at 12, 14, and 16 kA. The eddy-current measurement system was including a probe with frequency range of 0.1 to 3 MHz and an eddy current flaw detector. They were performed by contacting the probe on the specimen. The measurements were performed particularly in the vicinity of heat affected zone (HAZ). In order to determine the results of the residual stress measurement, the calibration curves between static tensile stress and eddy current impedance at various frequencies were accomplished. The Measurement System Analysis (MSA) was utilized to evaluate the changed eddy-current probe impedance from residual stress. The results showed that using eddy current technique at 1 MHz for residual stress measurement was the most efficient. It can be achieved the Gauge Repeatability & Reproducibility %GR&R at 16.61479 and Number of Distinct Categories (NDC) at 8. As applied on actual butt welded joint, it could yield the uncertainty of ± 58 MPa at 95 % (UISO).


Author(s):  
Yan Zhang ◽  
YuanBo Bi ◽  
JianPing Zhou ◽  
DaQian Sun ◽  
HongMei Li

Abstract As two important industrial manufacturing materials, titanium alloys and stainless steel have their own advantages and disadvantages in terms of physical, chemical, and mechanical properties. The field of materials manufacturing has witnessed efforts to develop technical processes that can properly combine these two alloy types, aiming to effectively use their respective advantages. The welding technology for Ti alloy and stainless steel, as a research topic with broad prospects, is comprehensively and deeply analyzed in this review. The current research progress in this field was analyzed from different process perspectives such as fusion welding, brazing, diffusion welding, friction welding, explosive welding and vacuum hot-rolling welding. The results of the review showed that the greatest challenges of fusion welding are low ductility of the material, high residual stress, high cooling rate, and the formation of numerous brittle Ti-Fe intermetallics. By using appropriate intermediate materials between these two materials, the residual stress and brittle intermetallics near the interface of the transition joint can be minimised by solving the thermal expansion mismatch, reducing the bonding temperature and pressure, and suppressing the diffusion of elements such as Ti and Fe.


Sign in / Sign up

Export Citation Format

Share Document