Development of Micro-High Speed Gas Bearing and its Application to Micro-Turbo Charger

Author(s):  
Kousuke ISOMURA ◽  
Shinichi Togo ◽  
Shuji TANAKA ◽  
Masayoshi ESASHI
Keyword(s):  
2014 ◽  
Vol 136 (4) ◽  
Author(s):  
James White

Increased storage capacity and decreased power consumption are two key motivations in the development of hard disk drive (HDD) storage products. Two ideas that address these areas have recently received attention in the literature. These are (1) the use of helium instead of air as the working gas in the drive and (2) the incorporation of a thin metal foil as the disk substrate, replacing the much thicker aluminum or glass substrate of the hard disk (HD). The work that has been previously reported considered either the use of helium or thin foil substrates, but not both. This paper does consider both. It reports dynamic gas bearing simulation results for the helium filled interface between opposed recording heads and a disk whose substrate is a thin titanium foil. Motivation for the selection of titanium as the foil material is described in the paper. The thickness of the foil is chosen so as to achieve an optimal combination of centrifugal force and bending force that will provide required disk flatness and stability during high-speed rotation. Large-scale dynamic simulation is used to track the response of the recording head slider-foil disk interface due to mechanical shock in the vertical, pitch, and roll directions. Results are described and compared with those of the configuration that includes helium and a HD. Attention is focused on response to off-design conditions that can create head crash with the HD.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liangliang Li ◽  
Yonghui Xie

Purpose Owing to the development of the smaller-sized rotational machinery, the demand for the high-speed and low-resistance gas bearing increases rapidly. The research of micro gas bearing in the condition of rarefied gas state is still not satisfied. Therefore, the purpose of this paper is to present a numerical investigation of the effect of misalignment and rarefaction effect on the comprehensive performance of micro-electrical-mechanical system (MEMS) gas bearing. Design/methodology/approach The Fukui and Kaneko model is expanded to 2D solution domain to describe the flow field parameters. The finite element method is used to discretize the equation. Newton–Raphson method is used to solve the nonlinear equations for the static performance of gas bearing, and partial deviation method is adopted for the solution of dynamic equations. Findings The static and dynamic characteristics of MEMS gas bearing are calculated, and the comparison is made to study the influence of rarefaction effect and misalignment. The results show that the rarefaction effect will decrease bearing load capacity compared with traditional solution of Reynolds equation, and the misalignment will reduce the stability of bearing. The influence of misalignment on gas film thickness is also analyzed in this paper. Originality/value The investigation of this paper emerges the change regularity of comprehensive performance of MEMS gas bearing considering rarefaction effect and misalignment, which provides a reference for the actual manufacturing of MEMS gas bearing and for the safety operation of micro dynamic machinery. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0023/


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
C. J. Teo ◽  
L. X. Liu ◽  
H. Q. Li ◽  
L. C. Ho ◽  
S. A. Jacobson ◽  
...  

Silicon based power micro-electro-mechanical system (MEMS) applications require high-speed microrotating machinery operating stably over a large range of operating conditions. The technical barriers to achieving stable high-speed operation with micro-gas-bearings are governed by (1) stringent fabrication tolerance requirements and manufacturing repeatability, (2) structural integrity of the silicon rotors, (3) rotordynamic coupling effects due to leakage flows, (4) bearing losses and power requirements, and (5) transcritical operation and whirl instability issues. To enable high-power density the micro-turbomachinery must be run at tip speeds comparable to conventional scale turbomachinery. The rotors of the micro-gas turbines are supported by hydrostatic gas journal and hydrostatic gas thrust bearings. Dictated by fabrication constraints the location of the gas journal bearings is at the outer periphery of the rotor. The high bearing surface speeds (target nearly 10×106 mm rpm), the very low bearing aspect ratios (L/D<0.1), and the laminar flow regime in the bearing gap (Re<500) place these micro-bearing designs into unexplored regimes in the parameter space. A gas-bearing supported micro-air turbine was developed with the objectives of demonstrating repeatable, stable high-speed gas-bearing operation and verifying the previously developed micro-gas-bearing analytical models. The paper synthesizes and integrates the established micro-gas-bearing theories and insight gained from extensive experimental work. The characteristics of the new micro-air turbine include a four-chamber journal bearing feed system to introduce stiffness anisotropy, labyrinth seals to avoid rotordynamic coupling effects of leakage flows, a reinforced thrust bearing structural design, a redesigned turbine rotor to increase power, a symmetric feed system to avoid flow and force nonuniformity, and a new rotor micro-fabrication methodology for reduced rotor imbalance. A large number of test devices were successfully manufactured demonstrating repeatable bearing geometry. More specifically, three sets of devices with different journal bearing clearances were produced to investigate the dynamic behavior as a function of bearing geometry. Experiments were conducted to characterize the “as-fabricated” bearing geometry, the damping ratio, and the natural frequencies. Repeatable high-speed bearing operation was demonstrated using isotropic and anisotropic bearing settings reaching whirl-ratios between 20 and 40. A rotor speed of 1.7×106 rpm (equivalent to 370 m/s blade tip speed or a bearing DN number of 7×106 mm rpm) was achieved demonstrating the feasibility of MEMS-based micro-scale rotating machinery and validating key aspects of the micro-gas-bearing theory.


Author(s):  
Giri L. Agrawal

This paper summarizes the chronological progress of foil air bearings for turbomachinery during the last 25 years. Descriptions of various machines which are in production are provided. The foil bearing air cycle machine on the 747 aircraft has demonstrated an MTBF (mean time between failure) in excess of 100,000 hours. Many advantages of foil air bearings are noted. Various designs of foil air bearings presently in use and their relative merits are described. Analytical methods, their limitations, and their relationships with test results are noted. Descriptions of various machines built and tested in process fluids being gases, other than air, and cryogenic liquids are described. Conclusions are drawn that various high speed turbomachines including high temperature applications can be designed and developed using foil air bearings which will increase efficiency and reduce cost of these machines.


Author(s):  
Robert N. Petro ◽  
Daejong Kim

Flexure pivot tilting pad gas bearings are recognized as an alternative to foil gas bearing [1, 2] for high speed turbomachinery, due to their capability to provide high rotor-bearing stability and simple structure. The flexure pivot design eliminates wear problem of axial pins or sockets at the pivots which are common in traditional tilting pad bearings. Added features such as a pivot offset and pad preloads can also be optimized to further improve the stability. Hybrid flexure pivot tilting pad gas bearing have also been reported [3]. The hybrid bearing has a direct air supply to the bearing clearance through a tiny orifice. It has shown that the hybrid operation of the tilting pad gas bearing can also increase the rotor-bearing stability [3]. In many microturbomachinery applications, hollow shafts are adopted to reduce the rotor weight and increase the bending critical speeds. However, the hollow shaft has a large centrifugal growth at high speeds requiring the gas bearing to have radial compliances. However, the radial compliance within the tilting pads can compromise the rotor-bearing stability because large displacement of the pads along the radial direction can cause hydrodynamic rotor-bearing instability associated with the increased bearing clearance (i.e. decreased effective preload) if the radial stiffness is not designed properly. Analytical studies show that optimal choice of pad radial stiffness could extend operating envelope of flexure pivot tilting pad gas bearing without deteriorating rotor-bearing stability [4]. High speed operation can generate significant amount of heat and adequate heat dissipation mechanism should also be developed. Hybrid operation is considered to have added benefit of effective cooling capability. This paper presents design studies on hybrid flexure tilting pad gas bearing with radial compliance which can accommodate large rotor centrifugal growth and also provide effective cooling mechanism.


Author(s):  
L. X. Liu ◽  
Z. S. Spakovszky

The high-speed micro hydrostatic gas journal bearings used in the high-power density MIT micro-engines are of very low aspect ratio with an L/D of less than 0.1 and are running at surface speeds of order 500 m/s. These ultra-short high-speed bearings exhibit whirl instability limits and a dynamic behavior much different from conventional hydrostatic gas bearings. The design space for stable high-speed operation is confined to a narrow region and involves singular behavior (Spakovszky and Liu (2003)). This together with the limits on achievable fabrication tolerance that can be achieved in the silicon chip manufacturing technology severely affects bearing operability and limits the maximum achievable speeds of the micro turbomachinery. This paper introduces a novel variation of the axial-flow hydrostatic micro-gas journal bearing concept which yields anisotropy in bearing stiffness. By departing from axial symmetry and introducing biaxial symmetry in hydrostatic stiffness, the bearing’s top speed is increased and fabrication tolerance requirements are substantially relieved making more feasible extended stable high-speed bearing operation. The objectives of this work are: (1) to characterize the underlying physical mechanisms and the dynamic behavior of this novel bearing concept, and (2) to report on the design, implementation and test of this new micro-bearing technology. The technical approach involves the combination of numerical simulations, experiment, and simple, first principles based modeling of the gas bearing flow field and the rotordynamics. A simple description of the whirl instability threshold with stiffness anisotropy is derived explaining the instability mechanisms and linking the governing parameters to the whirl ratio and stability limit. An existing analytical hydrostatic gas bearing model is extended and modified to guide the bearing design with stiffness anisotropy. Numerical simulations of the full non-linear governing equations are conducted to validate the theory and the novel bearing concept. Experimental results obtained from a micro-bearing test device are presented and show good agreement between the theory and the measurements. The theoretical increase in achievable bearing top speed and the relief in fabrication tolerance requirements due to stiffness anisotropy are quantified and important design implications and guidelines for micro gas journal bearings are discussed.


2005 ◽  
Vol 2005.3 (0) ◽  
pp. 253-254
Author(s):  
Kousuke ISOMURA ◽  
Shuji TANAKA ◽  
Kousuke Hikichi ◽  
Yuuki Endo ◽  
Shinichi Togo
Keyword(s):  

Processes ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 72 ◽  
Author(s):  
Zhonghui Li ◽  
Yue Niu ◽  
Enyuan Wang ◽  
Lanbo Liu ◽  
Honghao Wang ◽  
...  

Coal mass is deformed and fractured under stress to generate electrical potential (EP) signals. The mechanical properties of coal change with the adsorption of gas. To investigate the EP response characteristics of gas-bearing coal during deformation and fracture, a test system to monitor multi-parameters of gas-bearing coal under load was designed. The results showed that abundant EP signals were generated during the loading process and the EP response corresponded well with the stress change and crack expansion, and validated this with the results from acoustic emission (AE) and high-speed photography. The higher stress level and the greater the sudden stress change led to the greater EP abnormal response. With the increase of gas pressure, the confining action and erosion effect are promoted, causing the damage evolution impacted and failure characteristics changes. As a result, the EP response is similar while the characteristics were promoted. The EP response was generated due to the charge separation caused by the friction effect etc. during the damage and deformation of the coal. Furthermore, the main factors of the EP response were different under diverse loading stages. The presence of gas promoted the EP effect. When the failure of the coal occurred, EP value rapidly rose to a maximum, which could be considered as an anomalous characteristic for monitoring the stability and revealing failure of gas-bearing coal. The research results are beneficial for further investigating the damage-evolution process of gas-bearing coal.


1970 ◽  
Vol 37 (4) ◽  
pp. 945-953 ◽  
Author(s):  
F. C. Hsing ◽  
H. S. Cheng

This paper presents a numerical scheme capable of yielding accurate pressure profile for the transient and steady hydrodynamic gas film generated by high-speed relative motion of two nonparallel surfaces. The numerical difficulties associated with high compressibility numbers for the gas film Reynolds equation were overcome by employing a set of systematically generated irregular grid spacings based on a coordinate transformation. By coupling the fluid-film solution with the equations of motion of a tilting pad, the dynamics of the mass film interaction were treated. Results are presented for both steady-state and dynamical solutions. Static solutions for a 120-deg partial-arc gas bearing have been used for comparison.


Author(s):  
R G Chen ◽  
Q Zhou ◽  
Y Liu ◽  
Y Hou

With the rapid development of high-speed, oil-free turbomachinery, more and more attention is concentrated on compliant aerodynamic foil bearings. However, the common corrugated bump foil forming the compliant structure is so complicated that manufacturing it is time-consuming and troublesome. In this article, a simple type of aerodynamic foil thrust gas bearing with an elastic hemispherical convex dot support configuration is first proposed. Then experimental investigations on stability and its load capacity characteristic for this foil thrust bearing were conducted on a multi-functional thrust bearing test rig. The preliminary measurement and analysis are presented through the wave and spectrum of axial displacement response in the time and frequency domain. It is demonstrated that the proposed bearing can operate well and has good stability in tests, and experimental results show that the axial load can reach 25 N when the rotational speed is about 114 200 r/min.


Sign in / Sign up

Export Citation Format

Share Document