Making Development of an Inflatable Structure Device to Support Forearms in Holding and Lifting Down Heavy Loads with Braking Mechanism

2020 ◽  
Vol 2020 (0) ◽  
pp. C-6-4
Author(s):  
Akihiro KAWANO ◽  
Toshinori SUZUKI ◽  
Nobuyuki TAKAGISHI ◽  
Takeshi FUJITA ◽  
Tomotaka HORIUCHI ◽  
...  
2020 ◽  
Vol 31 (2) ◽  
pp. 83-88 ◽  
Author(s):  
Fernando K. Carvalho ◽  
Rodolfo G. Chechetto ◽  
Alisson A. B. Mota ◽  
Ulisses R. Antuniassi

Crop protection on major crops is now required to follow the principles of integrated pest management so the timing and accuracy of any application of a pesticide or biopesticide has to be more precise to minimize adverse effects on non-target species. The development of UAVs (unmanned aerial vehicles) provides a means of providing a more targeted application of the correct dose, especially by using formulations that are more persistent, thus minimizing loss of spray in areas subject to rain. Avoiding use of too high a dosage allows greater survival of natural enemies and reduces the selection pressure for pests becoming resistant to specific modes of action. The downward flow of air from a UAV should also provide better distribution and impaction of droplets within a crop canopy, reduce soil impaction caused by taking heavy loads of spray applied with 200 l ha–1 of water, and allow treatments when fields are too wet to access with ground equipment. In Asia, many smallholder farmers are using a drone in preference to using a knapsack sprayer. According to Matthews, it has been shown that ULV spraying can be effective, but it needs a narrow droplet spectrum with the droplets remaining stable and not shrinking to become too small. Formulation research can reduce the volatility of the spray, hence the success of oil-based sprays. However, instead of petroleum-based oils, there is a chance to develop vegetable oil carriers with micro-sized particle suspensions to deliver low toxicity pesticides in droplets that can be deposited within the crop and not drift beyond the crop boundary. Oil deposits will be less prone to loss after rain so less should be lost in neighbouring ditches and water courses, especially as rainfall patterns are forecast to change. More studies are needed to evaluate the swath for deposition, buffer zones, formulation, nozzle selection, to guide future specific legislation for UAV applications.


Alloy Digest ◽  
1965 ◽  
Vol 14 (2) ◽  

Abstract Bohnolloy R-57 is a very strong manganese bronze recommended for parts which are subjected to heavy loads. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-148. Producer or source: Bohn Aluminum & Brass Corporation.


Friction ◽  
2021 ◽  
Author(s):  
Beibei Chen ◽  
Mengjie Zhang ◽  
Kan Zhang ◽  
Zhe Dong ◽  
Jiaye Li ◽  
...  

AbstractStudies show that two dimensional (2D) nanomaterial and its hybrid have a great promise in tribology for the special laminar microstructure. However, the majority of performed investigations about 2D graphitic carbon nitride (g-C3N4) nanosheets are most focused on energy storage, catalysis, adsorption, rarely tribology. In the present study, g-C3N4 supporting mono-dispersed Ag nanoparticle hybrid (g-C3N4/Ag) is prepared, and its microstructure and chemical composition are determined. More specifically, the tribological performance as the lubricating additive of poly phthalazinone ether sulfone ketone (PPESK) composite is investigated using the ball-on-disc friction tester. Moreover, the corresponding enhancement mechanism is well proposed based on the experimental analysis and theoretical simulation. Obtained results show that Ag nanoparticles with a size of about 10–20 nm are homogeneously anchored on g-C3N4 nanosheets, favoring for good compatibility between g-C3N4/Ag and PPESK. It is found that when 0.3 wt% of g-C3N4/Ag is added to PPESK, the friction coefficient and wear rate of PPESK decrease by 68.9% and 97.1%, respectively. These reductions are mainly attributed to the synergistic self-lubricating effect of Ag nanoparticles and g-C3N4 nanosheet, the formation of transfer film, as well as the limited effect of g-C3N4/Ag on the shear deformation of PPESK composite film. Furthermore, it is found that the proposed g-C3N4/Ag-PPESK composite still keeps reasonable friction-reducing and wear-resistant properties under heavy loads and high rotating speeds. The present study demonstrates that the proposed g-C3N4/Ag hybrid is an excellent lubricating additive for polymer composites.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 169
Author(s):  
Kazem Jadidi ◽  
Morteza Esmaeili ◽  
Mehdi Kalantari ◽  
Mehdi Khalili ◽  
Moses Karakouzian

Asphalt is a common material that is used extensively for roadways. Furthermore, bituminous mixes have been used in railways, both as asphalt and as mortar. Different agencies and research institutes have investigated and suggested various applications. These studies indicate the benefits of bituminous material under railways, such as improving a substructure’s stiffness and bearing capacity; enhancing its dynamic characteristics and response, especially under high-speed train loads; waterproofing the subgrade; protecting the top layers against fine contamination. These potential applications can improve the overall track structure performance and lead to minimizing settlement under heavy loads. They can also guarantee an appropriate response under high-speed loads, especially in comparison to a rigid slab track. This review paper documents the literature related to the utilization of asphalt and bituminous mixes in railway tracks. This paper presents a critical review of the research in the application of asphalt and bituminous mixes in railway tracks. Additionally, this paper reviews the design and construction recommendations and procedures for asphalt and bituminous mixes in railway tracks as practiced in different countries. This paper also provides case studies of projects where asphalt and bituminous mixes have been utilized in railway tracks. It is anticipated that this review paper will facilitate (1) the exchange of ideas and innovations in the area of the design and construction of railway tracks and (2) the development of unified standards for the design and construction of railway tracks with asphalt and bituminous mixtures.


Author(s):  
Vienny N. Nguyen ◽  
Blaine W. Lilly ◽  
Carlos E. Castro

Insects as mechanical systems have been optimized for form and function over millions of years. Ants, in particular, can lift and carry extremely heavy loads relative to their body mass. Loads are lifted with the mouthparts, transferred through the neck joint to the thorax, and distributed over six legs and feet that anchor to the supporting surface. While previous research efforts have explored attachment mechanisms of the feet, little is known about the mechanical design of the neck — the single joint that connects the load path from the thorax to the head. This work combines mechanical testing, computed tomography (CT) and scanning electron microscope (SEM) imaging, and computational modeling to better understand the mechanical structure-function relation of the ant neck joint.


PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0180320 ◽  
Author(s):  
Christopher L. Dembia ◽  
Amy Silder ◽  
Thomas K. Uchida ◽  
Jennifer L. Hicks ◽  
Scott L. Delp

Author(s):  
Geoff W. Connors

Protection of the pipe during and after pipeline construction is of paramount importance for safety and pipeline integrity. Areas of rock and stone are often encountered during construction of new pipelines. Even with modern pipeline coatings, additional protection for the pipe is necessary where rock or stone exposure is significant. Historically, additional pipe protection used in these types of situations is achieved through adding either a significant layer of sand or select backfill above and below the pipeline (sand padding) and/or by attaching a high-impact resistant, poly-type rock shield around the pipeline during the pipeline installation process. To accommodate sand padding, some form of intermittent support of the pipeline is generally required to elevate the pipeline off the trench bottom. Similar intermittent support is also recommended practice when using poly-type rock shields to keep the pipeline from fully resting on trench rocks. Current methods of in-trench support involve sand piles, sand bags, spray foam and individually formed foam pillows — each with drawbacks: i) Sand Piles are difficult to install and often oval or dent the pipe when improperly placed. ii) Sand bags require hand placement for proper support. In open trenches, this can be time consuming and unsafe. Improper placement can cause the pipe to oval or dent. iii) Spray-in foam is considered to be an obstruction of cathodic protection currents. Newly constructed pipelines full of hydrostatic test water and one metre cover can cause foam to compress excessively. iv) Foam pillows are light and easily placed — but can float out of position and compress or crack under heavy loads. As with all foam, cathodic shielding is always a concern. A new, engineered method of in-trench pipeline support is now available — the Structured Pipeline Pillow (SPP). SPP’s are injection molded and made from high strength, environmentally inert polypropylene or polyethylene resins. Designed to support any size pipeline, SPP’s are most effective with larger diameter, heavier pipelines. One SPP is engineered to carry a single 40′ joint of heavy wall pipeline filled with hydrostatic test water. Compared with current methods, SPP’s: i) Stack tightly for transport. ii) Are light enough for installation from outside the trench and resist floatation when ground water is present. iii) Help ensure the pipeline is centered in the trench during the pipeline installation. iv) Maintain long-term pipe clearance above rocky trench bottoms. v) Ovality and denting concerns are reduced. vi) Allow cathodic protection an easy path to the pipeline. vii) Will never biodegrade. In their extended stacking mode, SPP’s tested well as an effective alternative to wooden skids for many situations such as pipe stockpiling; stringing along the rights-of-way (ROW); and even for some low level skidding during the welding process.


Author(s):  
Jing Tao ◽  
Huanan Qian ◽  
Suiran Yu

The accuracy of machine is important to achieving highly accurate shapes. This paper is focused on mechanical design of highly accurate mechanical linkage servo press applicable to (near-)net shape forming. The effects of geometric errors, deformations under heavy loads and ram tilting are analyzed. A top-down design for accuracy approach is proposed: First, accuracy model for identification of inaccuracy-causing factors and their interlinking relations is developed. Then, based on this model, top accuracy index are decomposed and translated into structure design specifications at component level. Both analytic and simulation methods are employed for design for accuracy in aspects of dimensional and geometric tolerance allocation, stiffness synthesis and anti-eccentric load capability. A case study of mechanical design for accuracy of a six-linkage mechanical servo press is also presented to demonstrate and test the proposed design approaches.


2017 ◽  
Vol 2017 ◽  
pp. 1-23 ◽  
Author(s):  
Ali Ghorbani ◽  
Mostafa Firouzi Niavol

Coupled Piled Raft Foundations (CPRFs) are broadly applied to share heavy loads of superstructures between piles and rafts and reduce total and differential settlements. Settlements induced by static/coupled static-dynamic loads are one of the main concerns of engineers in designing CPRFs. Evaluation of induced settlements of CPRFs has been commonly carried out using three-dimensional finite element/finite difference modeling or through expensive real-scale/prototype model tests. Since the analyses, especially in the case of coupled static-dynamic loads, are not simply conducted, this paper presents two practical methods to gain the values of settlement. First, different nonlinear finite difference models under different static and coupled static-dynamic loads are developed to calculate exerted settlements. Analyses are performed with respect to different axial loads and pile’s configurations, numbers, lengths, diameters, and spacing for both loading cases. Based on the results of well-validated three-dimensional finite difference modeling, artificial neural networks and evolutionary polynomial regressions are then applied and introduced as capable methods to accurately present both static and coupled static-dynamic settlements. Also, using a sensitivity analysis based on Cosine Amplitude Method, axial load is introduced as the most influential parameter, while the ratio l/d is reported as the least effective parameter on the settlements of CPRFs.


BMJ Open ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. e020157 ◽  
Author(s):  
Marcial Velasco Garrido ◽  
Janika Mette ◽  
Stefanie Mache ◽  
Volker Harth ◽  
Alexandra M Preisser

ObjectivesTo assess the physical strains of employees in the German offshore wind industry, according to job type and phase of the wind farm (under construction or operation).DesignWeb-based cross-sectional survey.SettingOffshore wind farm companies operating within the German exclusive economic zone.ParticipantsMale workers with regular offshore commitments and at least 28 days spent offshore in the past year (n=268).Outcome measuresPhysical strains (eg, climbing, noise, working overhead, with twisted upper body or in confined spaces, vibration, heavy lifting, humidity, odours).ResultsThe most frequently mentioned physical strain was ’climbing’ with 63.8% of the respondents reporting to be always or frequently confronted with climbing and ascending stairs during offshore work. Work as a technician was associated with a greater exposition to noise, vibrations, humidity, cold, heat, chemical substances, lifting/carrying heavy loads, transport of equipment, working in non-ergonomic positions and in cramped spaces, as well as climbing.Indeed, statistical analyses showed that, after adjusting for phase of the wind farm, age, nationality, offshore experience, work schedule and type of shift, compared with non-technicians, working as a technician was associated with more frequently lifting/carrying of heavy loads (OR 2.58, 95% CI 1.58 to 4.23), transport of equipment (OR 2.06 95% CI 1.27 to 3.33), working with a twisted upper body (OR 2.85 95% CI 1.74 to 4.69), working overhead (OR 2.77 95% CI 1.67 to 4.58) and climbing (OR 2.30 95% CI 1.40 to 3.77). Working in wind farms under construction was strongly associated with increased and decreased exposure to humidity (OR 2.32 95% CI 1.38 to 3.92) and poor air quality (OR 0.58 95% CI 0.35 to 0.95), respectively.ConclusionsWorkers on offshore wind farms constitute a heterogeneous group, including a wide variety of occupations. The degree of exposure to detrimental physical strains varies depending on the type of job. Technicians are more exposed to ergonomic challenges than other offshore workers.


Sign in / Sign up

Export Citation Format

Share Document