Effect of Low-frequency Vertical Vibration of Elevator on Ride Comfort

2020 ◽  
Vol 2020.29 (0) ◽  
pp. 6103
Author(s):  
Hiroyuki OWAKI ◽  
Miwako KITAMURA ◽  
Yanli ZHANG ◽  
Shinji ARAI ◽  
Junichi NAKAGAWA
Author(s):  
Xiaofeng Yang ◽  
Long Yan ◽  
Yujie Shen ◽  
Hongchang Li ◽  
Yanling Liu

Inerter, a new type of mass element, can increase the inertia of motion between two endpoints. In order to study the dynamic inertia effect of inerter–spring–damper suspension for heavy vehicle on ride comfort and road friendliness, the inerter–spring–damper suspension is applied and its mechanism is studied. This paper establishes a half vehicle model of inerter–spring–damper suspension for heavy vehicle. The parameters of inerter–spring–damper suspension for heavy vehicle are optimized by multi-objective genetic algorithm and system simulations are carried out. The parametric influence of different spring stiffness, damping coefficient, inertance, and load on suspension performance is also studied. The simulation results demonstrate that the centroid acceleration and pitch angular acceleration are improved by 24.90% and 23.54%, respectively, and the comprehensive road damage coefficient is reduced by 4.05%. The results illustrate that the inerter–spring–damper suspension can decrease the vertical vibration of vehicle suspension especially in low frequency and reduce the road damage. The analyses of suspension parameters perturbation reveal their different effect laws of the different wheels on vehicle ride comfort and road friendliness, which provide a theoretical basis for setting parameters of inerter–spring–damper suspension.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3015 ◽  
Author(s):  
Jijian Lian ◽  
Hongzhen Wang ◽  
Haijun Wang

Research on the safety of powerhouse in a hydropower station is mostly concentrated on the vibration of machinery structure and concrete structure within a single unit. However, few studies have been focused on the vibration transmission among units. Due to the integrity of the powerhouse and the interaction, it is necessary to study the vibration transmission mechanism of powerhouse structure among units. In this paper, field structural vibration tests are conducted in an underground powerhouse of a hydropower station on Yalong River. Additionally, the simplified mechanical models are established to explain the transmission mechanism theoretically. Moreover, a complementary finite element (FE) model is built to replicate the testing conditions for comprehensive analysis. The field tests results show that: (1) the transmission of lateral-river vibration is greater than those of longitude-river vibration and vertical vibration; (2) the vibration transmission of the vibrations that is caused by the low frequency tail fluctuation is basically equal to that of the vibrations caused by rotation of hydraulic generator. The transmission mechanism is demonstrated by the simplified mechanical models and is verified by the FE results. This study can provide guidance for further research on the vibration of underground powerhouse structure.


Actuators ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 42 ◽  
Author(s):  
Keigo Ikeda ◽  
Ayato Endo ◽  
Ryosuke Minowa ◽  
Takayoshi Narita ◽  
Hideaki Kato

Active seat suspension has been proposed to improve ride comfort for ultra-compact mobility. Regarding the ride comfort of passengers due to vertical vibration, the authors have confirmed from biometry measurements that reduction of the vibration acceleration does not always produce the best ride comfort for passengers. Therefore, heart rate variability that can quantitatively reflect stress is measured in real time, and a control method was proposed that feeds back to active suspension and confirms its effectiveness by fundamental verification. In this paper, we will confirm the influence of the vibration stress on the psychological state of the occupant by the masking method.


2019 ◽  
Vol 21 (3) ◽  
pp. 589-602 ◽  
Author(s):  
Changyuan Zhai ◽  
John Long ◽  
Randal Taylor ◽  
Paul Weckler ◽  
Ning Wang

Abstract With recent developments allowing increased planter speeds, improving spatial uniformity of crop emergence will continue to be an important focus of research. Vertical vibration during planting usually interferes with the seed metering and delivery process, and thereby affects seeding quality. Two different row crop planters were instrumented with accelerometers to monitor vertical vibration of planter row units in five fields with a total area of 220 ha in both no-till and strip-tilled conditions. The test results showed that the row unit vibration linearly increased with planting speeds. The R2 of each fitting equation was more than 0.90. The main frequencies of the vibration were concentrated in a low-frequency band of 3 Hz to 10 Hz. These frequencies did not show an increasing trend with the planter speed. However, the amplitude clearly increased when the planter speed increased. For the John Deere MaxEmerge™ 5 planter, the manually measured average plant spacing was close to the target plant spacing with a maximum error of 21 mm, and a max coefficient of variation (CV) of 24.3%; the standard deviation (SD) increased with travel speed and row unit vibration. For the John Deere ExactEmerge™ planter, the plant spacing was closer to the target plant spacing with a maximum error of only 5 mm and a max CV of 14.3%; the SD remained almost constant, at lower values than that of the MaxEmerge™ 5, at different speeds. For both planters, overall, the row unit vibration increased planting spatial variability. The quality of feed index decreased with increased vertical acceleration on the row unit while the miss index increased. However, the multiples index was generally unaffected by row unit vibration.


2020 ◽  
Vol 10 (22) ◽  
pp. 8167
Author(s):  
Mădălina Dumitriu ◽  
Dragoș Ionuț Stănică

The theoretical research on means to reduce the vertical vibrations and improve the ride comfort of the railway vehicle relies on a mechanical model obtained from the simplified representation of the vehicle, while considering the important factors and elements affecting the vibration behaviour of the carbody. One of these elements is the anti-yaw damper, mounted longitudinally, between the bogie and the vehicle carbody. The anti-yaw damper reduces the lateral vibrations and inhibits the yaw motion of the vehicle, a reason for which this element is not usually introduced in the vehicle model when studying the vertical vibrations. Nevertheless, due to the position of the clamping points of the anti-yaw damper onto the carbody and the bogie, the damping force is generated not only in the yawing direction but also in the vertical and longitudinal directions. These forces act upon the vehicle carbody, impacting its vertical vibration behaviour. The paper analyzes the effect of the anti-winding damper on the vertical vibrations of the railway vehicle carbody and the ride comfort, based on the results derived from the numerical simulations. They highlight the influence of the damping, stiffness and the damper mounting angle on the power spectral density of the carbody vertical acceleration and the ride comfort index.


2012 ◽  
Vol 510 ◽  
pp. 249-254 ◽  
Author(s):  
Jin Feng ◽  
Yuan Hua Chen

Bus vibration is studied by the finite element method (FEM) base on bus structure model. The bus mathematical model of vertical vibration is established and the vibration response variables were deduced with the modal analysis method. The finite element (FE) model is established and decoupled. The transformational relation between spatial frequency displacement power spectral density (PSD) and temporal frequency displacement PSD and the sampling characteristics of the road irregularity PSD in numerical computation are discussed. Road irregularity load is modeled in software. The FE model is solved using modal analysis method and the acceleration PSD of each keypoint can be gained. Finally, a road test experiment is carried on to verify the simulation results. The example indicated that study on vehicle ride comford by FEM has instructive meaning.


2012 ◽  
Vol 204-208 ◽  
pp. 502-507 ◽  
Author(s):  
Quan Min Liu ◽  
Xun Zhang ◽  
Zhi Jun Zhang ◽  
Xiao Zhen Li

On the basis of the measured ground borne vibration of some inter-city express railway viaduct, test results analysis shows that: the test environmental vibration is under the limit set by standard of environmental vibration in urban area; whether transverse or vertical vibration, a rapid attenuation of the peak acceleration with the distance to the up-track center is observed, however the vibration at 7.5m appears to be amplified; the ground vibration with the distance conforms to a logarithmic relationship; the horizontal ground vibration at 7.5m caused by the elevated rail transit is larger 3.6cm/s2 than the vertical vibration; low-frequency vibration transfers farther than high frequency vibration; the eccentric effect of two-track viaduct is obvious.


2014 ◽  
Vol 85 (10) ◽  
pp. 104502 ◽  
Author(s):  
G. Li ◽  
H. Hu ◽  
K. Wu ◽  
G. Wang ◽  
L. J. Wang

Sign in / Sign up

Export Citation Format

Share Document