Optimum NPK Fertilizer Rates for Growth and Yield ofSolarium macrocarpon(cv. Igbagba)

1997 ◽  
Vol 3 (1) ◽  
pp. 73-77 ◽  
Author(s):  
D. O. Ojo ◽  
A. O. Olufolaji
Agriculture ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 198 ◽  
Author(s):  
Suzanne Goh ◽  
Thohirah Lee Abdullah ◽  
Siti Hassan ◽  
Johnson Stanslas

Zingiber zerumbet (L.) Smith, known as Lempoyang in Malaysia, belongs to the family Zingiberaceae. Previous studies on Lempoyang mainly focused on the chemical properties and biological activities of the rhizome extracts of this plant. Despite the tremendous demand for the rhizomes of Z. zerumbet, there is a lack of information on cultivation practices and a scarcity of planting materials. By using the pre-soaked technique, the challenges posed by Z. zerumbet dormancy can be overcome, obtaining good quality and uniform planting material throughout the year. Besides that, it is also crucial to determine the optimum shade level and NPK fertilizer rates to obtain a high yield and good quality rhizomes of Lempoyang. Six concentrations of 6-benzylaminopurine (BAP, 0, 50, 100, 150, 200, and 250 mg/L) and ethephon (0, 150, 300, 450, 600, and 750 mg/L) were tested to evaluate their effects on breaking rhizome dormancy. Three different shade levels (full sun, 30%, and 50% shade levels) and four combinations of Nitrogen (N), phosphorus (P), and potassium (K) (NPK) fertilizer at different rates were evaluated to study their effects on plant growth and yield performance. The results showed that BAP at 100 mg/L and ethephon at 300 mg/L performed better than the other compound concentrations tested in promoting the breaking of bud dormancy. A significant interaction effect was observed between shade levels and NPK fertilizer rates in all the growth parameters examined, except for the number of tillers per plant. Plants grown under 30% shade with NPK 4 produced the highest rhizome fresh weight, dry weight, and yield, but plants grown under 50% shade with NPK 4 showed the highest plant height and number of tillers per plant.


2021 ◽  
Vol 13 ◽  
pp. 10-23
Author(s):  
Carol Mutua ◽  
Joshua Otieno Ogweno ◽  
Robert Morwani Gesimba

Pepino melon (Solanum muricatum Ait.) is an exotic vegetable whose consumption is on the increase in Kenya due to its health and nutritional benefits. A study was conducted at Egerton University, Kenya in 2018-2019 to investigate the effect of NPK fertilizer rates (0, 100, 200. 300 and 400 kg ha-1) on growth and yield of field and greenhouse grown pepino melons. The experiment was laid in a randomized complete block design with three replications. Data was recorded on plant height, stem diameter, number of leaves per bush, number of branches, days to 50% flowering, fruit weight and total yield. Data were analyzed using analysis of variance with the SAS statistical package. Significant means were separated using Tukey’s Honestly Significant Difference at p ≤ 0.05. Results indicated that NPK fertilizer rates and growing environment influenced growth and yield of pepino melon. At 100 DAP plants grown in the greenhouse and supplied with 200 kg NPK ha-1 had a stem diameter of 14.01 mm which was significantly bigger p ≤ 0.05 compared to those grown in the field and supplied with 300 kg NPK ha-1 with a stem diameter of 11.71 mm in trial two. Application of 300 kg NPK ha-1 for field grown pepino melons gave the highest yield of 1102.48 kg ha-1 and 1060.55 kg ha-1 in trial one and two respectively. In conclusion, application of 300 kg ha-1 of NPK fertilizer for field grown pepino melon is recommended.


2009 ◽  
pp. 201-207 ◽  
Author(s):  
Marijana Pesakovic ◽  
Dragutin Djukic ◽  
Leka Mandic ◽  
Milan Rakicevic ◽  
Rade Miletic

Over 2003-2005 period, a study was performed on the effect of different rates of NPK fertilizer of formulation 8:16:24 + 3% MgO (N1 - 400 kg ha-1; N2 - 600 kg ha-1; N3 - 800 kg ha-1; N4 - 1000 kg ha-1) on development of the soil fungi. The trial was set up in the experimental plum orchard established by Fruit Research Institute Cacak, and the laboratory of Department of Microbiology, Faculty of Agronomy Cacak. Unfertilized soil was used as the control soil. Each of the stated variants was carried out in three replications. The size of the basic plot was 68 m2. The effect of the studied mineral fertilizer rates was determined three times over the growing season, the number of fungi being checked by the indirect rarefaction method on Chapek nutritive medium. The results of the study inferred that the application of mineral fertilizers brought about the decrease in the number of fungi. Of all studied variants, the one with the highest nitrogen rate (variant N4) exhibited the strongest effect. The influence of the fertilizer was highest at the third sampling. Furthermore, the effect was highest in season 2003.


2016 ◽  
Vol 10 (1) ◽  
pp. 53-62
Author(s):  
Visca R Yuanita ◽  
Tri Kurniastuti ◽  
Palupi Puspitorini

Research about influence of goat manure and NPK fertilizer on the growth and yield of green eggplant (Solanum mengolena L.) has been conducted in field village farmer-owned Semen Gandusari District of Blitar which took place in March-April 2016. The aim of this study was to know the interaction for among goat manure and NPK fertilizer on the growth and yield of green eggplant as well as the effect of each factor. This study uses Randomaized Complete Block Design (RCBD) factorial consisting of 16 treatment and each 3 replicates ie: P0M0, P0M1, P0M2, P0M3, P1M0, P1M1, P1M2, P1M3, P2M0, P2M1, P2M2, P2M3, P3M0, P3M1 , P3M2, P3M3. The data taking were plant height, leaf number, fruit length, fruit diameter and weight of fruit per plant. The data were analyzed to F test as followed by a 5% test Honestly Significant Difference (HSD) error level of 5%. The experimental results very significant effect on plant height, leaf number, fruit length and weight of fruits per plant and the effect is not noticeable to the diameter of fruit plants green eggplant. The combined use goat manure 750 g / plant and NPK fertilizer 60 g / plant (P2M3) is proper fertilization to improve the growth and best yield of green eggplant with the highest total weight of the fruit crop that yields 1576.6 grams


Author(s):  
Irpan Gunawan ◽  
Atak Tauhid ◽  
Isna Tustiyani

<p><em>Cauliflower is one of the vegetables for consumers. The demand for cauliflower was rising so it must be scaled up with fertilizer. The purpose of this study was to study the effect of chicken manure and NPK fertilizer on the growth and yield of cauliflower. The study was conducted in Sukasenang Village, Banyuresmi Sub-district, Garut Regency from July to August 2019. The study used a Randomized Block Design (RBD) in two factors each of the 3 rates with 2 replications. The first factor was the rates of chicken manure which consisted of 0, 10 and 20 tons ha<sup>-1</sup>; the second factor was NPK fertilizer which consists of 0, 100 and 200 kg ha<sup>-1</sup>. The parameter of this research was plant height, number of leaves, leaf area, weight and diameter crud. The results showed that there was no interaction between the chicken manure and NPK fertilizer. The treatment of 20 tons ha<sup>-1</sup> chicken manure affected the variable plant height, the number of leaves and leaf area. The rates of 200 kg ha<sup>-1</sup> NPK fertilizer had affected plant height, number of leaves, weight and diameter crud.</em></p>


2018 ◽  
Vol 2 (2) ◽  
pp. 188
Author(s):  
Ahmad Khanafi ◽  
Yafizham Yafizham ◽  
Didik Wisnu Widjajanto

The objective of this research was to investigate the effectiveness of combination of bio-slurry fertilizer and NPK fertilizer on the growth and production of two varieties of rice. The experiment was assigned in a completely randomized design of factorial pattern. The first factor was the combination of bio-slurry and NPK fertilizer that consisted of P0 = no added fertilizer (control) 0 ton/ha, P1 = NPK fertilizer 550 kg/ha (165 kg N, 33 kg P, 45 kg K); P2 = bio-slurryfertilizer 2.3 tons/ha (45 kg N, 14 kg P, 23 kg K) and NPK fertilizer 400 kg/ha (120 kg N, 24 kg P, 32 kg K); P3 = bio-slurryfertilizer 4.6 tons/ha (90 kg N, 28 kg P, 46 kg K) and NPK fertilizer 250 kg/ha (75 kg N, 15 kg P, 20 kg K); P4 = bio-slurry fertilizer 5.9 tons/ha (115 kg N, 36 kg P, 59 kg K) and NPK fertilizer 100 kg/ha (30 kg N, 6 kg P, 8 kg K); and P5 = bio-slurryfertilizer 8.5 tons/ha (165 kg N, 52 kg P, 85 kg K). The second factor was varieties of rice that consisted of V1 : IR-64 and V2 : Ciherang. Each treatment was repeated three times. Parameters observed were plant height, number of tillers, weight of 1.000 grains, and rice production. Data were analyzed using ANOVA and continued with Duncan’s Multiple Range Test (DMRT). The results showed that the combination of bio-slurry fertilizer and NPK fertilizer were significantlyaffect (p <0.05)all observation parameters, while varieties of wetland rice did not show significant effect on all observation parameters (p<0.05). The application of bio-slurry fertilizer in single treatment or in either combination with NPK fertilizer had the same result with the treatment of NPK fertilizer on the growth and yield of rice. Keywords: rice, fertilizer combination, bio-slurry fertilizer, NPK fertilizer


2013 ◽  
Vol 3 (2) ◽  
pp. 183-191
Author(s):  
Muhammad Rizqillah Hidayat

       Watermelon come from arid tropical and subtropical regions of Africa. Watermelon is an annual plant that grows and requires full sun. Lebak swamp soil is known to have the properties and properties of acid sulphate soils that affect the physical, chemical and biological properties of the soil. Fertilizers are the key to soil fertility. Compound fertilizer is a fertilizer that contains several nutrients, for example nutrients (nitrogen), potassium (K) and phosphorus (P). This study aims (i) to obtain influence and (ii) the best dosage of various applications of NPK Compound fertilizer dosage on the growth and yield of watermelon plants on lebak wetland. The study was conducted in Teluk Buluh Village, Banjang District, Hulu Sungai Utara Regency in July - September 2013, this study used a single randomized block design (RBD) with 5 treatments and 5 replications so that there were 25 experimental units. The factors tested were various doses of Compound NPK fertilizer, namely m1: 0.333 t.ha-1 (200 g / bed), m2: 0.666 t.ha-1 (400 g / bed), m3: 0.999 t.ha-1 ( 600 g / bed), m4: 1,332 t.ha-1 (800 g / bed) and m5: 1,665 t.ha-1 (1000 g / bed). The results of this study indicate that the dosage of Compound NPK fertilizer given to watermelon plants in swampland area had a significant effect on plant length and number of leaves aged 25 HST and 30 HST and had a very significant effect on the fruit weight and number of watermelon plants with the best treatment is  m3: 0.999 t.ha-1 (600 g / bed).


2021 ◽  
Vol 35 (1) ◽  
Author(s):  
Carol Mutua ◽  
Joshua Ogweno ◽  
Robert Gesimba

The present study evaluated the effect of NPK fertilizer (17:17:17) rates (0, 100, 200, 300 and 400 kg ha-1) on the postharvest quality of field and greenhouse grown pepino melons (Solanum muricatum Ait.) stored at room temperature (15-22°C) and at low temperature (7°C). The study was carried out in randomized complete block design with fruits from the field and greenhouse, five NPK fertilizer rates as treatments and the two storage temperatures replicated three times. Data were collected on percentage fruit weight loss (PWL), total soluble solids (TSS), firmness and shelf life. Results indicated that greenhouse and field grown fruits from the control and plants supplied with 100 kg NPK ha-1 had low PWL at both storage temperatures. Field grown fruits from the control stored at room temperature had the highest TSS and were firmer after 28 days of storage. Field grown fruits not supplied with fertilizer and stored at low temperature had a shelf life of 27 and 26 days in trial one and two respectively. Application of 100 kg NPK ha-1 and storage of pepino melon fruits at low temperature can be used to enhance quality and shelf life.


2019 ◽  
Vol 37 (4) ◽  
pp. 379-383
Author(s):  
Renato Yagi ◽  
Rogério P Soratto ◽  
Nilceu RX de Nazareno ◽  
Henrique L da Silva ◽  
Alexandre de C Dzierwa

ABSTRACT The usual application of high 4-14-8 NPK fertilizer rates in the potato planting furrows, independently of the soil fertility or nutritional cultivar requirements, has become a paradigm in Brazil. However, the 4-14-8 NPK formula does not always meet the crop needs, and can unbalance the availability of nutrients in the soil. The objective of this study was to evaluate the tuber yield and economic results of ‘Atlantic’ potato as affected by rates of 4-14-8 and 6-30-6 NPK formulas applied in the planting furrows. The rates of both NPK formulas were calculated to reach P2O5 rates of 210, 420, and 630 kg ha-1. At each P2O5 rate, the 6-30-6 formula resulted in less 30% N and 65% K2O in the planting furrow compared to 4-14-8 formula. A randomized complete block design in a factorial scheme (2×3)+1, including an unfertilized furrow control, with three replications was used. Only the use of 6-30-6 formula increased the total tuber yield of ‘Atlantic’ potato. The marketable tuber yield reached higher levels (29.8 t ha-1) with higher P2O5 rate (440 kg ha-1) using the 6-30-6 than 4-14-8 formula. The fertilizer rates and formulas NPK did not affect specific gravity of marketable tubers. Therefore, the use of a fertilizer more concentrated in P2O5 that favors smaller contributions of N and K (as the 6-30-6 formula studied in this work) provides lower costs, and greater operational efficiency and profits in relation to the 4-14-8 formula traditionally used for the potato crop.


Sign in / Sign up

Export Citation Format

Share Document