scholarly journals Phytoremediation of Heavy Metals from Wastewater Using Bean Plants

2014 ◽  
Vol 11 (3) ◽  
pp. 1373-1380
Author(s):  
Abeer Al Saharty

The Bean Plants were used in this work as low cost adsorbent material for removal of Pb(II), Cd(II) and Zn(II) ions from aqueous solutions. The samples were prepared and sorted according to the particles diameter by standard sieves 250 - 500 µm. Batch adsorption experiments were carried out to study the adsorption process pH of adsorbent, effect of contact time, effect of adsorbent amount and effect of metal concentration were Investigated in these experiments. The effect of any one of those previously mentioned parameters on the adsorption capacity were studied while the other parameters were kept constant. The maximum adsorption capacities of beans for the removal of selected heavy metals were very high. It is suggested to use it as a low coast adsorbent material to clean up the water in the environment from toxic heavy metals.

Our Nature ◽  
2013 ◽  
Vol 11 (1) ◽  
pp. 11-16 ◽  
Author(s):  
N. Gandhi ◽  
D. Sirisha ◽  
K.B. Chandra Sekhar

The presence of toxic heavy metals such as chromium (VI) contaminants in aqueous streams, arising from the discharge of untreated metal containing effluents into water bodies, is one of the most important environmental problems. Adsorption is one of the effective techniques for chromium (VI) removal from wastewater. In the present study, adsorbent was prepared from low cost adsorbents and studies were carried out for chromium (VI) removal. Batch adsorption studies demonstrated that the adsorbents had significant capacity to adsorb the chromium from aqueous solution. It was found that the adsorption increased with increase in contact time and adsorbent dosage. An attempt was made to study mixed algae as an adsorbent for removal of chromium (VI).DOI: http://dx.doi.org/10.3126/on.v11i1.8238 Our Nature Vol.11(1) 2013: 11-16?


Author(s):  
Joshua O. Ighalo ◽  
Lois T. Arowoyele ◽  
Samuel Ogunniyi ◽  
Comfort A. Adeyanju ◽  
Folasade M. Oladipo-Emmanuel ◽  
...  

Background: The presence of pollutants in polluted water is not singularized hence pollutant species are constantly in competition for active sites during the adsorption process. A key advantage of competitive adsorption studies is that it informs on the adsorbent performance in real water treatment applications. Objective: This study aims to investigate the competitive adsorption of Pb(II), Cu(II), Fe(II) and Zn(II) using elephant grass (Pennisetum purpureum) biochar and hybrid biochar from LDPE. Method: The produced biochar was characterised by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The effect of adsorption parameters, equilibrium isotherm modelling and parametric studies were conducted based on data from the batch adsorption experiments. Results: For both adsorbents, the removal efficiency was >99% over the domain of the entire investigation for dosage and contact time suggesting that they are very efficient for removing multiple heavy metals from aqueous media. It was observed that removal efficiency was optimal at 2 g/l dosage and contact time of 20 minutes for both adsorbent types. The Elovich isotherm and the pseudo-second order kinetic models were best-fit for the competitive adsorption process. Conclusion: The study was able to successfully reveal that biomass biochar from elephant grass and hybrid biochar from LDPE can be used as effective adsorbent material for the removal of heavy metals from aqueous media. This study bears a positive implication for environmental protection and solid waste management.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mulu Berhe Desta

Adsorption of heavy metals (Cr, Cd, Pb, Ni, and Cu) onto Activated Teff Straw (ATS) has been studied using batch-adsorption techniques. This study was carried out to examine the adsorption capacity of the low-cost adsorbent ATS for the removal of heavy metals from textile effluents. The influence of contact time, pH, Temperature, and adsorbent dose on the adsorption process was also studied. Results revealed that adsorption rate initially increased rapidly, and the optimal removal efficiency was reached within about 1 hour. Further increase in contact time did not show significant change in equilibrium concentration; that is, the adsorption phase reached equilibrium. The adsorption isotherms could be fitted well by the Langmuir model. The value in the present investigation was less than one, indicating that the adsorption of the metal ion onto ATS is favorable. After treatment with ATS the levels of heavy metals were observed to decrease by 88% (Ni), 82.9% (Cd), 81.5% (Cu), 74.5% (Cr), and 68.9% (Pb). Results indicate that the freely abundant, locally available, low-cost adsorbent, Teff straw can be treated as economically viable for the removal of metal ions from textile effluents.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hakan Çelebi ◽  
Gülden Gök ◽  
Oğuzhan Gök

Abstract Recently, the search for low-cost eco-friendly adsorbents has become one of the main objectives of researchers. The aim of this study was to test the removal of four heavy metals, namely lead (Pb), zinc (Zn), nickel (Ni) and cadmium (Cd), from a simulated watery solution using brewed tea waste as a potentially suitable adsorbent. The effects of pH levels (2.0–6.0), adsorbent amount (0.1–5.0 g), contact times (1–150 min.) were examined throughout the adsorption process. The results of the experiments showed that the heavy metals elimination yields had an inverse relationship with pH and a linear relationship between the other parameters. The optimum pH for the removal of the heavy metals was between 4.0 and 5.0 in the case of the brewed tea waste. Equilibrium times of 2, 10, 30 and 5 min were required for the adsorption of Pb, Zn, Ni, Cd onto Camellia sinensis, respectively. Based on the results of this study it can be said that brewed tea waste has a high potential to remove heavy metals from aqueous solutions. The maximum adsorption capacities were calculated as 1.197, 1.457, 1.163 and 2.468 mg/g, for Pb, Zn, Ni and Cd, respectively, by fitting the equilibrium data to the Langmuir isotherm model.


2020 ◽  
Vol 81 (1) ◽  
pp. 159-169
Author(s):  
Feyza Ergüvenerler ◽  
Şerif Targan ◽  
Vedia Nüket Tirtom

Abstract Simple, fast, effective, low cost and waste biosorbents, lemon, bean and artichoke shells, were used to remove lead (II) ions from aqueous solution. The influence of pH, contact time, temperature and lead (II) concentration of the removal process was investigated. The sufficient contact time was deemed 10 minutes for bean and artichoke shells and 60 minutes for lemon shells for Pb(II) ions. The thermodynamic parameters, such as standard free energy (ΔG), standard enthalpy (ΔH), and standard entropy (ΔS) of the adsorption process were calculated as −5.6786, −5.5758, −3.1488 kJmol−1 for ΔG, −7.2791, −20.285, −9.5561 kJ mol−1 for ΔH, −0.00545, −0.05017, −0.02185 kJ mol−1 K−1 for ΔS, respectively, for lemon, artichoke and bean shells. Maximum adsorption capacities of lead (II) were observed as 61.30 mg g−1, 88.5 mg g−1 and 62.81 mg g−1, respectively, for lemon, bean and artichoke shells according to the Freundlich isotherm model at 20 °C. Scanning electron microscope (SEM) and energy-dispersive X-ray detector (EDX) were used to characterize the surface morphology of the adsorbents. Consequently, Pb(II) removal using lemon, bean and artichoke shells would be an effective method for the economic treatment of wastewater.


2021 ◽  
Author(s):  
Rachida Souidi ◽  
yasmina khane ◽  
Lahcen Belarbi ◽  
Smain Bousalem

Abstract In this work, the sawdust of vine wood (VW) was treated with sulfuric acid and used to adsorb methylene blue (MB) from aqueous solutions via a batch adsorption process. The characteristics of the adsorbent were determined by various analytical techniques such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) and Brunauer−Emmett−Teller (BET) N2 adsorption−desorption isotherms. The effects of various experimental parameters including sulfuric acid concentration, particle size of the adsorbent, pH of the solution, contact time, initial concentration, adsorbent dosage and temperature on adsorption of MB by activating sawdust were systematically investigated. The experimental results showed that the adsorption efficiency was increased with contact time and adsorbent dosage. The maximum removal efficiency was found after 180 min of solid/liquid contact with adsorbent doses of 1 g/l for sawdust. The isotherm and kinetic experimental data for MB adsorption on VW sawdust were best-fitted by Langmuir models and Pseudo-second-order, respectively. The calculated values of the entropy (ΔS°), enthalpy (ΔH°) and Gibbs energy (ΔG°) indicated that the adsorption process was exothermic in nature. These results suggest that the activated sawdust can be employed as a low-cost and environmentally friendly adsorbent for the treatment of wastewaters containing dyes.


2020 ◽  
Author(s):  
Fola Temilade Akinhanmi ◽  
Edwin Andrew Ofudje ◽  
Idowu Abideen Adeogun ◽  
Aina Peter ◽  
Joseph Mayowa Ilo

Abstract The presence of heavy metals in polluted water is known not only to cause stern harm to marine organisms but also to terrestrial plants and animals including human beings. This research applied low-cost and environmental benign adsorbent primed from waste orange peel (OP) for the removal of Cd(II) ions from aqueous solution via batch adsorption process. The surface properties of the orange peel powder were studied using Scanning Electron Microscopy (SEM), X-ray spectroscopy (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Operational conditions like temperature, contact time, sorbent dosage, solution pH and initial adsorbate concentration were investigated. The utmost uptake of Cd(II) ion was obtained at a contact time of 120 mins, initial metal concentration of 240 mg/L, adsorbent dosage of 0.04 g/L, temperature of 45 °C and solution pH of 5.5. Equilibrium results showed that the orange peel adsorbent has an adsorption capacity of 128.23 mg/g as obtained from the Langmuir isotherm. The adsorption kinetics data followed a pseudo-first-order kinetic model with correlation coefficient (R2) >0.9 and low standard % error values. The adsorption process was found to be endothermic in nature with enthalpy of 0.0046 kJ mol−1 and entropy of-636.865 Jmol-1K-1 respectively. Results from the optimization study indicated that higher adsorbent dosage and lower Cd(II) ion concentration increased the percentage of Cd (II) ion removal. Thus, orange peel could be used in the removal of Cd(II) ion from aqueous solutions.


Author(s):  
Sirajo L ◽  
Musa L. ◽  
Ndanusa I. A.

Adsorption of heavy metal cationic ions (Cr, Pb, and Cu) onto coconut husk carbon (CHC) adsorbent has been studied using batch-adsorption method. The study was carried out to investigate the adsorption kinetic and adsorption isotherm of the coconut husk adsorbent for the removal of heavy metals in waste liquid effluent. The influence of pH, contact time, adsorbent dose, and adsorbent concentration, and temperature on the adsorption process was also studied. Results indicated an initial increase in adsorption rate, and optimal removal of heavy metal was reached within 70 minutes, further increase in contact time and temperature show significant change in equilibrium concentration. Also, further increase in adsorbent dosage revealed significant change in the sorption capacity of the CHC. The adsorption isotherms could be fitted well by both Langmuir and Freundlich models. The RI (equilibrium parameter) value in the present investigation was less than 1 (one) which indicates that the adsorption of the heavy metals ions on the CHC is favorable. The value of n for this study which indicates the degree of non-linearity between solution concentration and adsorption were 0.31–0.39, this result indicated that the adsorption of heavy metals onto the CHC is a chemical sorption. After treatment of synthetic heavy metal solution with the CHC, the adsorption isotherm model analysis revealed that the adsorption capacity (b) of CHC for the heavy metal were 89 mg/L (Cr), 125.5 mg/L (Pb), and 129.7 mg/L (Cu). Conclusively, the results indicate that the freely abundant agricultural waste-coconut husk can be treated for heavy metal adsorption but it’s not economically viable because it’s not renewable due to the chemisorption nature of the adsorption process.


2016 ◽  
Vol 6 (3) ◽  
pp. 377-388 ◽  
Author(s):  
Ibrahim Umar Salihi ◽  
Shamsul Rahman Muhamed Kutty ◽  
Muhamed Hasnain Isa ◽  
Nasir Aminu

Pollution caused by heavy metals has become a serious problem to the environment nowadays. The treatment of wastewater containing heavy metals continues to receive attention because of their toxicity and negative impact on the environment. Recently, various types of adsorbents have been prepared for the uptake of heavy metals from wastewater through the batch adsorption technique. This study focused on the removal of zinc from aqueous solution using microwave incinerated sugarcane bagasse ash (MISCBA). MISCBA was produced using microwave technology. The influence of some parameters such as pH, contact time, initial metal concentration and adsorbent dosage on the removal of zinc was investigated. The competition between H+ and metal ions has affected zinc removal at a low pH value. Optimum conditions for zinc removal were achieved at pH 6.0, contact time 180 min and adsorbent dosage of 10 g/L, respectively. The maximum adsorption capacity for the removal of zinc was found to be 28.6 mg/g. The adsorption process occurred in a multilayered surface of the MISCBA. Chemical reaction was the potential mechanism that regulates the adsorption process. MISCBA can be used as an effective and cheap adsorbent for treatment of wastewater containing zinc metal ions.


Author(s):  
Seroor Atalah Khaleefa Alia ◽  
Dr. Mohammed Ibrahimb ◽  
Hussein Ali Hussein

Adsorption is most commonly applied process for the removal of pollutants such as dyes and heavy metals ions from wastewater. The present work talks about preparing graphenic material attached sand grains called graphene sand composite (GSC) by using ordinary sugar as a carbon source. Physical morphology and chemical composition of GSC was examined by using (FTIR, SEM, EDAX and XRD). Efficiency of GSC in the adsorption of organic dyes from water was investigated using reactive green dye with different parameters such as (ph, temperature, contact time and dose). Adsorption isotherm was also studied and the results showed that the maximum adsorption capacity of dye is 28.98 mg/g. This fast, low-cost process can be used to manufacture commercial filters to treat contaminated water using appropriate engineering designs.


Sign in / Sign up

Export Citation Format

Share Document