Optimisation of a Pump-Controlled Hydraulic System using Digital Displacement Pumps

Author(s):  
L. Viktor Larsson ◽  
Robert Lejonberg ◽  
Liselott Ericson

When electrifying working machines, energy-efficient operation is key to maximise the use of the limited capacity of on-board batteries. Previous research indicate high energy savings by means of component and system design. In contrast, this paper focuses on how to maximise energy efficiency by means of both design and control optimisation. Simulation-based optimisation and dynamic programming are used to find the optimal electric motor speed trajectory and component sizes for a scooptram machine equipped with pump control, enabled by digital displacement pumps with dynamic flow sharing. The results show that a hardware configuration and control strategy that enable low pump speed minimise drag losses from parasitic components, partly facilitated by the relatively high and operation point-independent efficiencies of the pumps and electric motor. 5–10% cycle energy reductions are indicated, where the higher figure was obtained for simultaneous design and control optimisation. For other, more hydraulic-intense applications, such as excavators, greater reductions could be expected.

Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 20
Author(s):  
Paul Motzki

The versatility of the form factors of thermal shape memory alloys (SMA) in combination with their unique actuation and sensing abilities allow for the design and construction of innovative multifunctional systems. Despite the considerable number of advantages, such as their exceptional energy density, only a few SMA-based actuator systems are commercially available. One of the main reasons for this is their inefficient thermal activation and the resulting high energy consumption. The efficiency of SMA-based actuator systems can be improved by innovative design and control approaches. In the first part of this paper, the intelligent combination of SMA actuator wires with bi-stable, nonlinear spring elements is described. This combination eliminates the commonly quoted disadvantages of SMAs—slow actuation and energy inefficiency—for a wide range of applications. In particular, two energy-free actuator configurations are realized, which can be applied to any non-proportional actuation tasks. The second approach for the realization of high-speed actuation and energy efficiency is the activation of SMA wires with high voltage pulses, which leads to actuation times in the millisecond range and energy savings of up to 80% in comparison to the suppliers’ recommendations. It is shown that even high AC voltages such as typical mains supplies can be directly used for highly efficient SMA activation.


2021 ◽  
Vol 39 (2) ◽  
pp. 638-642
Author(s):  
Ermakov Andrey ◽  
Salakhov Rishat ◽  
Khismatullin Renat ◽  
Idiatullin Bulat

This paper studies the effect of the electrically-driven pump on improving the efficiency of internal combustion engine cooling systems. Numerical one-dimensional simulation of the system operation was performed according to the European transient cycle (ETC). The paper compares the cooling system with a belt-driven pump and electrically-driven pump. It was found that the electrically-driven cooling system not only could maintain a more stable coolant temperature, and also provided energy savings for the pump drive. It can be noted that the mechanically-driven cooling system has disproportionately high energy costs, unstable coolant temperature, so in case of sudden changes in operating modes, the built-in thermostat cannot keep it within two degrees Celsius. At high engine speeds and low load, the drive consumes too much power, and when thermostat is faulty and the coolant is overcooled, at low speeds and high load, the coolant is overheating. The paper also considers options with electric-driven pump with and without an enabled thermostat. With a working thermostat and electrically driven pump, the system consumes a little more energy, because the thermostat does not open fully and as a result, the pump speed is 8.2% higher than in a cooling system without a thermostat.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 575
Author(s):  
Shangyi Lou ◽  
Jin He ◽  
Hongwen Li ◽  
Qingjie Wang ◽  
Caiyun Lu ◽  
...  

Subsoiling has been acknowledged worldwide to break compacted hardpan, improve soil permeability and water storage capacity, and promote topsoil deepening and root growth. However, there exist certain factors which limit the wide in-field application of subsoiling machines. Of these factors, the main two are poor subsoiling quality and high energy consumption, especially the undesired tillage depth obtained in the field with cover crops. Based on the analysis of global adoption and benefits of subsoiling technology, and application status of subsoiling machines, this article reviewed the research methods, technical characteristics, and developing trends in five key aspects, including subsoiling shovel design, anti-drag technologies, technologies of tillage depth detection and control, and research on soil mechanical interaction. Combined with the research progress and application requirements of subsoiling machines across the globe, current problems and technical difficulties were analyzed and summarized. Aiming to solve these problems, improve subsoiling quality, and reduce energy consumption, this article proposed future directions for the development of subsoiling machines, including optimizing the soil model in computer simulation, strengthening research on the subsoiling mechanism and comprehensive effect, developing new tillage depth monitoring and control systems, and improving wear-resisting properties of subsoiling shovels.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 361
Author(s):  
Nicky M. M. D’Fonseca ◽  
Charlotte M. E. Gibson ◽  
Iris Hummel ◽  
David A. van Doorn ◽  
Ellen Roelfsema ◽  
...  

Obesity has been associated with altered reproductive activity in mares, and may negatively affect fertility. To examine the influence of long-term high-energy (HE) feeding on fertility, Shetland pony mares were fed a diet containing 200% of net energy (NE) requirements during a three-year study. The incidence of hemorrhagic anovulatory follicles (HAF) and annual duration of cyclicity were compared to those in control mares receiving a maintenance diet. Day-7 embryos were flushed and transferred between donor and recipient mares from both groups; the resulting conceptuses were collected 21 days after transfer to assess conceptus development. HE mares became obese, and embryos recovered from HE mares were more likely to succumb to early embryonic death. The period of annual cyclicity was extended in HE compared to control mares in all years. The incidence of HAFs did not consistently differ between HE and control mares. No differences in embryo morphometric parameters were apparent. In conclusion, consuming a HE diet extended the duration of cyclicity, and appeared to increase the likelihood of embryos undergoing early embryonic death following embryo transfer.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2416
Author(s):  
Marina Dorokhova ◽  
Fernando Ribeiro ◽  
António Barbosa ◽  
João Viana ◽  
Filipe Soares ◽  
...  

The energy efficiency requirements of most energy-consuming sectors have increased recently in response to climate change. For buildings, this means targeting both facility managers and building users with the aim of identifying potential energy savings and encouraging more energy-responsible behaviors. The Information and Communication Technology (ICT) platform developed in Horizon 2020 FEEdBACk project intends to fulfill these goals by enabling the optimization of energy consumption, generation, and storage and control of flexible devices without compromising comfort levels and indoor air quality parameters. This work aims to demonstrate the real-world implementation and functionality of the ICT platform composed of Load Disaggregation, Net Load Forecast, Occupancy Forecast, Automation Manager, and Behavior Predictor applications. Particularly, the results obtained by individual applications during the test phase are presented alongside the specific metrics used to evaluate their performance.


1990 ◽  
Vol 258 (5) ◽  
pp. H1357-H1365 ◽  
Author(s):  
E. D. Lewandowski ◽  
D. L. Johnston

13C and 31P nuclear magnetic resonance (NMR) spectra were used to assess substrate oxidation and high-energy phosphates in postischemic (PI) isolated rabbit hearts. Phosphocreatine (PCr) increased in nonischemic controls on switching from glucose perfusion to either 2.5 mM [3-13C]pyruvate (120%, n = 7) or [2-13C]acetate (114%, n = 8, P less than 0.05). ATP content, oxygen consumption (MVO2), and hemodynamics (dP/dt) were not affected by substrate availability in control or PI hearts. dP/dt was 40-60% lower in PI hearts during reperfusion after 10 min ischemia. Hearts reperfused with either pyruvate (n = 11) or acetate (n = 8) regained preischemic PCr levels within 45 s. Steady-state ATP levels were 55-70% of preischemia with pyruvate and 52-60% with acetate. Percent maximum [4-13C]glutamate signal showed reduced conversion of pyruvate to glutamate via the tricarboxylic acid (TCA) cycle at 4-min reperfusion (PI = 24 +/- 4%, means +/- SE; Control = 48 +/- 4%). The increase in 13C signal from the C-4 position of glutamate was similar to control hearts within 10.5 min. The increase in [4-13C]glutamate signal from acetate was not different between PI and control hearts. The ratio of [2-13C]Glu:[4-13C]Glu, reflecting TCA cycle activity, was reduced in PI hearts with acetate for at least 10 min (Control = 0.76 +/- 0.03; PI = 0.51 +/- 0.09) until steady state was reached. Despite rapid recovery of oxidative phosphorylation, contractility remained impaired and substrate oxidation was significantly slowed in postischemic hearts.


2013 ◽  
Vol 464 ◽  
pp. 253-257
Author(s):  
Hui Fang Chen

This paper takes the automatic control system of controllable pitch propeller in a multipurpose ocean tug as an example to describe the application of the S7-200 series PLC in the control system of 4500 horse power controllable pitch propeller in detail. The principle of control system is addressed, as well as the hardware configuration, the design idea of the main software and control process. The system shows high reliability, accuracy and good control performance in practical in practical running.


2016 ◽  
Vol 2 (3) ◽  
pp. 207 ◽  
Author(s):  
Xinran ( ◽  
N.A. William) ◽  
N.A. Tao ◽  
Kan Zhou ◽  
John R. Wagner ◽  
...  

Author(s):  
Karl Uebel ◽  
Henrique Raduenz ◽  
Petter Krus ◽  
Victor Juliano de Negri

This paper deals with design optimisation of hydraulic hybrid drivelines during early concept design phases. To set the design parameters of a hybrid driveline such as gear ratios, pump/motor displacements and size of energy storage, the energy management of the hybrid machine needs to be considered as well. This is problematic since a nested design and control optimisation normally requires substantial computer power and is time-consuming. Few previous studies have treated combined design and control optimisation of hydraulic hybrid vehicles using detailed, non-linear component driveline models. Furthermore, previously proposed design optimisation methods for on-road vehicles are not suitable for heavy off-road machines operating in short repetitive cycles with high transient power output. The paper demonstrates and compares different optimisation approaches for design and control optimisation combining deterministic dynamic programming and non-gradient based numerical optimisation. The results show that a simple rule-based energy management strategy can be sufficient to find the optimal hardware design even though non-optimal control laws are used.


Sign in / Sign up

Export Citation Format

Share Document