scholarly journals Diversity of Bacillus spp. from soybean phyllosphere as potential antagonist agents for Xanthomonas axonopodis pv. glycines causal of pustule disease

2021 ◽  
Vol 22 (11) ◽  
Author(s):  
Suhartiningsih Dwi Nurcahyanti ◽  
Wiwiek Sri Wahyuni ◽  
Rachmi Masnilah ◽  
Anggi Anwar Hendra Nurdika

Abstract. Nurcahyanti SD, Wahyuni WS, Masnilah R, Nurdika AAH. 2021. Diversity of Bacillus spp. from soybean phyllosphere as potential antagonist agents for Xanthomonas axonopodis pv. glycines causal of pustule disease. Biodiversitas 22: 5003-5011. Pustule disease caused by Xanthomonas axonopodis pv. glycines (Xag) is an important disease in soybean. Bacteria from soybean phyllosphere is one of the potential biological agents against this disease. This is because the microorganisms have similarity. This study aimed to determine the diversity and species of bacteria from the soybean phyllosphere that have potential as biological agents. The research was carried out by morphological observation, physiological - biochemical testing,  and molecularly with BOX AIR primer. Molecular identification was carried out by amplifying the 16S-rRNA gene with 27F and 1492R primers. The results showed that 11 isolates could inhibit Xag in vitro which showed morphological, biochemical, and molecular diversity. These bacteria were identified as Bacillus spp. which consisted of 4 groups, namely Bacillus siamensis, B. subtilis. B. amyloliquifaction and B. velezensis. The diversity of phyllosphere bacteria allows them to be used as biological agents because they do not inhibit each other and have diverse living abilities in various environmental conditions.

Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 294
Author(s):  
Yan Zhu ◽  
Pascal Drouin ◽  
Dion Lepp ◽  
Xiu-Zhen Li ◽  
Honghui Zhu ◽  
...  

Zearalenone (ZEA) is a mycotoxin widely occurring in many agricultural commodities. In this study, a purified bacterial isolate, Bacillus sp. S62-W, obtained from one of 104 corn silage samples from various silos located in the United States, exhibited activity to transform the mycotoxin ZEA. A novel microbial transformation product, ZEA-14-phosphate, was detected, purified, and identified by HPLC, LC-MS, and NMR analyses. The isolate has been identified as belonging to the genus Bacillus according to phylogenetic analysis of the 16S rRNA gene and whole genome alignments. The isolate showed high efficacy in transforming ZEA to ZEA-14-phosphate (100% transformation within 24 h) and possessed advantages of acid tolerance (work at pH = 4.0), working under a broad range of temperatures (22–42 °C), and a capability of transforming ZEA at high concentrations (up to 200 µg/mL). In addition, 23 Bacillus strains of various species were tested for their ZEA phosphorylation activity. Thirteen of the Bacillus strains showed phosphorylation functionality at an efficacy of between 20.3% and 99.4% after 24 h incubation, suggesting the metabolism pathway is widely conserved in Bacillus spp. This study established a new transformation system for potential application of controlling ZEA although the metabolism and toxicity of ZEA-14-phosphate requires further investigation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sujit Shah ◽  
Krishna Chand ◽  
Bhagwan Rekadwad ◽  
Yogesh S. Shouche ◽  
Jyotsna Sharma ◽  
...  

Abstract Background A plant growth-promoting endophytic bacterium PVL1 isolated from the leaf of Vanda cristata has the ability to colonize with roots of plants and protect the plant. PVL1 was isolated using laboratory synthetic media. 16S rRNA gene sequencing method has been employed for identification before and after root colonization ability. Results Original isolated and remunerated strain from colonized roots were identified as Bacillus spp. as per EzBiocloud database. The presence of bacteria in the root section of the plantlet was confirmed through Epifluorescence microscopy of colonized roots. The in-vitro plantlet colonized by PVL1 as well as DLMB attained higher growth than the control. PVL1 capable of producing plant beneficial phytohormone under in vitro cultivation. HPLC and GC-MS analysis suggest that colonized plants contain Indole Acetic Acid (IAA). The methanol extract of Bacillus spp., contains 0.015 μg in 1 μl concentration of IAA. PVL1 has the ability to produce antimicrobial compounds such as ethyl iso-allocholate, which exhibits immune restoring property. One-way ANOVA shows that results were statistically significant at P ≤ 0.05 level. Conclusions Hence, it has been concluded that Bacillus spp. PVL1 can promote plant growth through secretion of IAA during root colonization and ethyl iso-allocholate to protect plants from foreign infections. Thus, this study supports to support Koch’s postulates of bacteria establishment.


Author(s):  
Dorota Tekielska ◽  
Eliška Peňázová ◽  
Tamás Kovács ◽  
Břetislav Křižan ◽  
Jana Čechová ◽  
...  

The study overviews results of bacterial incidence in in vitro plant tissue cultures obtained from commercial laboratory dealing with plants micropropagation. For the exploration, the 454 pyrosequencing of the 16S rRNA gene was used. Three samples of plant in vitro cultures with visual bacterial contamination were subjected for identification of present bacteria. Eleven genera as Acinetobacter, Lactobacillus, Methylobacterium, Roseomonas, Microbacterium, Mycobacterium, Curtobacterium, Acidovorax, Magnetospirillum, Chryseobacterium and Ralstonia were detected. Obtained results confirmed the advantages of high‑throughput amplicon sequencing analysis for identification of bacterial communities in contaminated plant in vitro cultures what provides an important information for applying appropriate measures to eliminate bacterial contamination.


2020 ◽  
Vol 2 (2) ◽  
pp. 53
Author(s):  
Siti Rahayu ◽  
Suhartiningsih Dwi Nurcahyanti

Soybean pustule disease by Xanthomonas axonopodis pv. glycines (Xag) is one of the important diseases of soybean plant. Application Bacillus spp. origin of weed phyllosphere has a great potential as an alternative to control because it is isolated to origin of same region as Xag is the phyllosphere. Research by Nurcahyanti and Ayu obtained the best five isolates of Bacillus spp. of weeds phyllosphere in soybean cropping in inhibiting Xag in vitro. This study used the complete random draft (RAL) 6 treatment, 4 repeats, each unit consists of 4 plants wich treatment application of 5 isolates of Bacillus spp. namely K = control; A = Bacillus JG 1.3; B = Bacillus JG 3.6; C = Bacillus JG 1.4.1; D = Bacillus BGd 1.1; E = Bacillus Bp 2.2. The results showed that application of Bacillus spp. could inhibit Xag in vitro with bacteriostatic mechanism and isolates Bacillus BGd 1.1 has the greatest inhibition of 14.25 mm. Fifth Bacillus spp. can suppress the development of disease and isolates Bacillus BGd 1.1 has best results with the incubation period during 13 HSI, the severity of disease 10.07%, infection rate 0.045 unit/day as well as the effectiveness of control 85.72%. The fifth isolates of Bacillus spp. can not increase the number of leaves but can increase number of branches and isolates Bacillus JG 1.3, Bacillus JG 1.4.1 and Bacillus BGd 1.1 can increase the height of soybean crop.


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 941
Author(s):  
Nawal Benttoumi ◽  
Mariantonietta Colagiero ◽  
Samira Sellami ◽  
Houda Boureghda ◽  
Abdelaziz Keddad ◽  
...  

Fungi and bacteria associated to phytoparasitic nematodes Globodera rostochiensis and Meloidogyne spp. in Algeria were identified and characterized. Trichoderma spp. showed the highest prevalence in the cysts of G. rostochiensis. A number of isolates were identified through PCR amplification and the sequencing of the internal transcribed spacer (ITS)1-2 and Rpb2 gene regions. The most represented species were T. harzianum and T. afroharzianum. The latter and T. hirsutum were reported for the first time in Algeria. Fusarium spp., including F. oxysporum and F. solani, comprised a second group of fungi found in cysts. Taxa associated to females of Meloidogyne spp. included T. harzianum, Fusarium spp. and other hyphomycetes. To assess the efficacy of Trichoderma spp., two assays were carried out in vitro with the culture filtrates of two T. afroharzianum and T. harzianum isolates, to check their toxicity versus the second stage juveniles of M. incognita. After 24–48 h exposure, a mortality significantly higher than the control was observed for both filtrates at 1% dilutions. The TRI genes involved in the production of trichothecenes were also amplified with the PCR from some Trichoderma spp. isolates and sequenced, supporting a putative role in nematode toxicity. Bacteria isolated from the cysts of G. rostochiensis included Brucella, Rhizobium, Stenotrophomonas and Bacillus spp., identified through 16S rRNA gene sequencing. The potential of the microbial isolates identified and their mechanisms of action are discussed, as part of a sustainable nematode management strategy.


2021 ◽  
Vol 19 (1) ◽  
pp. 755-771
Author(s):  
Changjun Wu ◽  
Xiaopei Lin ◽  
Lin Tong ◽  
Chenwei Dai ◽  
Han Lv ◽  
...  

Abstract The extensive abuse of chemical synthetic additives has raised increased attention to food safety. As substitutes, probiotics play an important role in human health as they balance the intestinal microbes in host. This study was aimed to isolate and evaluate the potential probiotic activities of lactic acid bacteria (LAB) from a local pickled leaf mustard (PLM) from Wuwei city in Anhui province through in vitro experiments. A total of 17 LAB strains were obtained as probiotics. All the isolates were sensitive to chloramphenicol, tetracycline, erythromycin, and doxycycline but exhibited resistance to antibiotics (e.g., streptomycin, kanamycin, gentamicin, and vancomycin). Out of the 17 strains, 9 were sensitive to most of the antibiotics and had no cytotoxic activity on human colorectal adenocarcinoma cell line (HT-29) cells. The isolated AWP4 exhibited antibacterial activity against four indicator pathogen strains (ATCC8099: Escherichia coli, ATCC6538: Staphylococcus aureus, ATCC9120: Salmonella enteric, and BNCC192105: Shigella sonnei). Based on the phylogenetic analysis of the 16S rRNA gene, AWP4 belonged to Lactiplantibacillus plantarum. This study indicated that the Wuwei local PLM could be a potential resource to isolate beneficial LAB as probiotics. The data provide theoretical guidance for further animal experiments to estimate the probiotic effect and safety of Lpb. plantarum AWP4 in vivo.


Biomedicines ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 146
Author(s):  
Yao-Jong Yang ◽  
Peng-Chieh Chen ◽  
Fu-Ping Lai ◽  
Pei-Jane Tsai ◽  
Bor-Shyang Sheu

This study investigated the compositional differences in fecal microbiota between children with and without H. pylori infection and tested whether probiotics-containing yogurt and bacterial eradication improve H. pylori-related dysbiosis. Ten H. pylori-infected children and 10 controls ingested probiotics-containing yogurt for 4 weeks. Ten-day triple therapy plus yogurt was given to the infected children on the 4th week. Fecal samples were collected at enrollment, after yogurt ingestion, and 4 weeks after successful H. pylori eradication for cytokines and microbiota analysis using ELISA and metagenomic sequencing of the V4 region of the 16S rRNA gene, respectively. The results showed H. pylori-infected children had significantly higher levels of fecal TGF-β1 than those who were not infected. Eight of 295 significantly altered OTUs in the H. pylori-infected children were identified. Among them, the abundance of F. prausnitzii was significantly lower in the H. pylori-infected children, and then increased after yogurt ingestion and successful bacterial eradication. We further confirmed probiotics promoted F. prausnitzii growth in vitro and in ex vivo using real-time PCR. Moreover, F. prausnitzii supernatant significantly ameliorated lipopolysaccharide-induced IL-8 in HT-29 cells. In conclusions, Probiotics-containing yogurt ingestion and H. pylori eradication can restore the decrease of fecal F. prausnitzii in H. pylori-infected children.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1427-1427 ◽  
Author(s):  
S. M. Icoz ◽  
I. Polat ◽  
G. Sulu ◽  
M. Yilmaz ◽  
A. Unlu ◽  
...  

Pomegranate (Punica granatum L.) is an increasingly important fruit crop that is widely cultivated in Turkey. Typical bacterial blight symptoms were observed since spring of 2011 in pomegranate orchards located in Antalya Province. Symptoms were characterized by dark brown, angular to irregularly shaped spots on leaves and fruit; cankers on stems, branches, and trunks; and split trunks. The pathogen was isolated from leaf spots on naturally infected plants showing typical symptoms onto yeast dextrose chalk agar. Bright yellow bacterial colonies were consistently isolated. Bacterial strains were characterized as gram negative, oxidase negative, catalase positive, tobacco hypersensitivity positive, and able to produce acid from L-arabinose, D-galactose, D-glucose, and D-mannitol but not from D-xylose. Pathogenicity of the representative bacterial strain Serik-4 was performed on 2-year-old pomegranate plants cv. Hicaz. Leaves were sprayed until runoff with bacterial cell suspensions containing 107 CFU/ml. Inoculated plants were covered with transparent plastic bags to maintain moisture for 48 h. Negative control plants were inoculated with sterile distilled water. Plants were then incubated in a greenhouse at 30°C for 14 days. Symptoms on leaves included dark brown, angular to irregularly shaped water soaked lesions along the veins of the inoculated plants 10 days after inoculation. No lesions developed on the control plants. The symptoms on inoculated plants were similar to those on naturally infected plants. Yellow bacterial colonies were re-isolated from the inoculated plants and identified as the same as the original strain by conventional tests and FAME analysis, thus fulfilling Koch's postulates. Fatty acid methyl ester profiling of the representative strain Serik-4 using GC-MIDI (Microbial Identification Inc, Newark, DE) identified the genus of the bacterium as Xanthomonas. The identity of Serik-4 was further confirmed by amplifying the 16S rRNA gene with the universal primers 27F and 1492R (3) and sequence analysis (GenBank Accession No. KM007073). The 16S rRNA gene sequences of Serik-4 was 99% identical to the corresponding gene sequences of the Xanthomonas axonopodis pv. punicae strain present in the NCBI database (JQ067629.1). High incidence of bacterial blight caused by X. axonopodis pv. punicae on pomegranate has been previously reported in India (2), Pakistan (1), and South Africa (4). To our knowledge, this is the first report of bacterial blight on pomegranate caused by X. axonopodis pv. punicae in Turkey. References: (1) M. A. Akhtar and M. H. R. Bhatti. Pakistan J. Agric. Res. 13:95, 1992. (2) R. Chand and R. Kishun. Indian Phytopathol. 44:370, 1991. (3) D. J. Lane. Page 115 in: Nucleic Acid Techniques in Bacterial Systematics, 1991. (4) Y. Petersen et al. Australas. Plant Pathol. 39:544, 2010.


ÈKOBIOTEH ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 706-711
Author(s):  
A.S. Ryabova ◽  
◽  
T.R. Iasakov ◽  
E.A. Gilvanova ◽  
L.Y. Kuzmina ◽  
...  

From the mineral formation (pool fingers) of the shulgfan-Tash cave (Southern Urals) the first member of bacterial genus Pararhizobium was isolated (strain IB St 1-4). Pararhizobium is a genus of soil bacteria that fix nitrogen association with roots of legumes. Cells IB St 1-4 strain are Gram-negative straight rod-shaped bacterium (0,5-0,7×2,0-2,5μm). Growth is observed at 4-28°C with an optimum pH at 6-8. The strain precipitating of calcium carbonate on Ca-salts of malic acid in vitro. The relatedness of strain IB St 1-4 to members of Pararhizobium herbae, Pararhizobium giardinii and Pararhizobium polonicum species was revealed according physiological and biochemical features as well as phylogenetic analysis of the 16S rRNA gene sequence. The genes nifH and nodC that responsible for nitrogen fixation and plant nodulation in the strain IB St 1-4 were not detected.


2001 ◽  
Vol 183 (24) ◽  
pp. 7094-7101 ◽  
Author(s):  
S. J. Vandecasteele ◽  
W. E. Peetermans ◽  
R. Merckx ◽  
J. Van Eldere

ABSTRACT The aims of the present study were (i) to develop and test a sensitive and reproducible method for the study of gene expression in staphylococci and (ii) to study the expression of five housekeeping genes which are involved in nucleic acid metabolism (gmk, guanylate kinase; the dihydrofolate reductase [DHFR] gene), glucose metabolism (tpi, triosephosphate isomerase), and protein metabolism (the 16S rRNA gene;hsp-60, heat-shock protein 60) during in vitro exponential and stationary growth. A modified method for instant mRNA isolation was combined with gene quantification via Taqman real-time quantitative PCR. The detection limit of our method was 10 copies of RNA. The average intersample variability was 16%. A 10-fold increase in the expression of the hsp-60 gene was induced by exposure to a 10°C heat shock (37 to 47°C) for 10 min. During in vitro growth, the expression of all five housekeeping genes showed rapid up-regulation after inoculation of the bacteria in brain heart infusion medum and started to decline during the mid-exponential-growth phase. Maximal gene expression was 110- to 300-fold higher than gene expression during stationary phase. This indicates that housekeeping metabolism is a very dynamic process that is extremely capable of adapting to different growth conditions. Expression of the 16S rRNA gene decreases significantly earlier than that of other housekeeping genes. This confirms earlier findings forEscherichia coli that a decline in bacterial ribosomal content (measured by 16S rRNA gene expression) precedes the decline in protein synthesis (measured by mRNA expression).


Sign in / Sign up

Export Citation Format

Share Document