Extractive Resources, Conflicts and Migration

Author(s):  
Indra de Soysa

This chapter focuses on non-renewable resources and their relation to conflict and migration. It explores the argument that conflict is not brought by scarcity of these resources, but rather by resource abundance and the fact that they make looting possible. Access to valuable non-renewable resources, such as energy resources, can create crises of governance. Accountability decreases and rent seeking and corruption become common behaviors. ‘Lootable’ resources increase the possibilities of high political repression and income inequality, which then cause small and large-scale ‘uprooting’. Thus, tackling the issue of bad governance is key in order to solve migration flows caused by ‘lootable’ conflicts.

2015 ◽  
Vol 1116 ◽  
pp. 1-32 ◽  
Author(s):  
Neelima Mahato ◽  
Mohd Omaish Ansari ◽  
Moo Hwan Cho

The renewable energy sources had been known to humankind since the very beginning of the human civilization, though practiced in very primitive forms. The first civilization and subsequent greater civilizations, came up, existed, and flourished at or near river valley/basins. Rivers provided water for irrigation, domestic utilization, transportation; overall development of the entire civilization. In the latter years, the increase in the human population and certain revolutionary inventions and discoveries like fire, the wheel, and domestication of cattle and animals led the movement and spread of the human populations in the other parts of the globe far from river irrigated lands. Humans learnt to utilize underground waters and harvest rainwater for living and survival. In the course of development, there also increased demand for more energy and its storage so that it can be utilized as and when required. This brought humankind to discover the laws of thermodynamics, emergence of combustion engines, electromagnetic induction, electricity and storage devices, such as batteries and supercapacitors. The development has been revolutionized since last few centuries with increasing demand of energy with growing industries and a faster life. Nowadays, because of massive exploitation of fossil resources for fuel and electricity, and concerns of global warming, exploring renewable energy alternatives are gaining momentum. Of many renewable resources, viz., sun, wind, water, geothermal, biomass, etc., the biomass energy is the most widely studied one in terms of both, published literature and wide social acceptance across the globe followed by solar and wind energy.The chapter presents the potential alternatives to non-renewable energy resources, mechanism and machinery to draw and exploit the energy in the usable or utilizable form; past, present, recent progresses and future scope of the ongoing researches on this subject. The chapter also deals with the relative merits or pros and cons of the massive and large scale installation of machinery to produce electricity from some of the noteworthy renewable energy resources, such as, wind, water and sun, which is affecting the local environment or natural habitats, flora and fauna; overall influence on the delicate balance of the ecosystem.


2020 ◽  
pp. 165-171
Author(s):  
Iryna Hryhoruk

Exhaustion of traditional energy resources, their uneven geographical location, and catastrophic changes in the environment necessitate the transition to renewable energy resources. Moreover, Ukraine's economy is critically dependent on energy exports, and in some cases, the dependence is not only economic but also political, which in itself poses a threat to national security. One of the ways to solve this problem is the large-scale introduction and use of renewable energy resources, bioenergy in particular. The article summarizes and offers methods for assessing the energy potential of agriculture. In our country, a significant amount of biomass is produced every year, which remains unused. A significant part is disposed of due to incineration, which significantly harms the environment and does not allow earning additional funds. It is investigated that the bioenergy potential of agriculture depends on the geographical distribution and varies in each region of Ukraine. Studies have shown that as of 2019 the smallest share in the total amount of conventional fuel that can be obtained from agricultural waste and products suitable for energy production accounts for Zakarpattya region - 172.5 thousand tons. (0.5% of the total) and Chernivtsi region - 291.3 thousand tons. (0.9%). Poltava region has the greatest potential - 2652.2 thousand tons. (7.8%) and Vinnytsia - 2623.7 thousand tons. (7.7%). It should be noted that the use of the energy potential of biomass in Ukraine can be called unsatisfactory. The share of biomass in the provision of primary energy consumption is very small. For bioenergy to occupy its niche in the general structure of the agro-industrial complex, it is necessary to develop mechanisms for its stimulation. In addition, an effective strategy for the development of the bioenergy sector of agriculture is needed. The article considers the general energy potential of agriculture, its indicative structure. The analysis is also made in terms of areas. In addition, an economic assessment of the possible use of existing potential is identified.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Diego F. Leal ◽  
Nicolas L. Harder

AbstractEvidence from 184 countries over the span of 25 years is gathered and analyzed to understand North–North, South–South, and North–South international migration flows. Conceptually, the analysis borrows from network theory and Migration Systems Theory (MST) to develop a model to characterize the structure and evolution of international migration flows. Methodologically, the Stochastic Actor-oriented Model of network dynamics is used to jointly model the three types of flows under analysis. Results show that endogenous network effects at the monadic, dyadic, and triadic levels of analysis are relevant to understand the emergence and evolution of migration flows. The findings also show that a core set of non-network covariates, suggested by MST as key drivers of migration flows, does not always explain migration dynamics in the systems under analysis in a consistent fashion; thus, suggesting the existence of important levels of heterogeneity inherent to these three types of flows. Finally, evidence related to the role of political instability and countries’ care deficits is also discussed as part of the analysis. Overall, the results highlight the importance of analyzing flows across the globe beyond typically studied migratory corridors (e.g., North–South flows) or regions (e.g., Europe).


2021 ◽  
Vol 7 (2) ◽  
pp. 205630512110249
Author(s):  
Peer Smets ◽  
Younes Younes ◽  
Marinka Dohmen ◽  
Kees Boersma ◽  
Lenie Brouwer

During the 2015 refugee crisis in Europe, temporary refugee shelters arose in the Netherlands to shelter the large influx of asylum seekers. The largest shelter was located in the eastern part of the country. This shelter, where tents housed nearly 3,000 asylum seekers, was managed with a firm top-down approach. However, many residents of the shelter—mainly Syrians and Eritreans—developed horizontal relations with the local receiving society, using social media to establish contact and exchange services and goods. This case study shows how various types of crisis communication played a role and how the different worlds came together. Connectivity is discussed in relation to inclusion, based on resilient (non-)humanitarian approaches that link society with social media. Moreover, we argue that the refugee crisis can be better understood by looking through the lens of connectivity, practices, and migration infrastructure instead of focusing only on state policies.


Author(s):  
Yvonne R. Schumm ◽  
Dimitris Bakaloudis ◽  
Christos Barboutis ◽  
Jacopo G. Cecere ◽  
Cyril Eraud ◽  
...  

AbstractDiseases can play a role in species decline. Among them, haemosporidian parasites, vector-transmitted protozoan parasites, are known to constitute a risk for different avian species. However, the magnitude of haemosporidian infection in wild columbiform birds, including strongly decreasing European turtle doves, is largely unknown. We examined the prevalence and diversity of haemosporidian parasites Plasmodium, Leucocytozoon and subgenera Haemoproteus and Parahaemoproteus in six species of the order Columbiformes during breeding season and migration by applying nested PCR, one-step multiplex PCR assay and microscopy. We detected infections in 109 of the 259 screened individuals (42%), including 15 distinct haemosporidian mitochondrial cytochrome b lineages, representing five H. (Haemoproteus), two H. (Parahaemoproteus), five Leucocytozoon and three Plasmodium lineages. Five of these lineages have never been described before. We discriminated between single and mixed infections and determined host species-specific prevalence for each parasite genus. Observed differences among sampled host species are discussed with reference to behavioural characteristics, including nesting and migration strategy. Our results support previous suggestions that migratory birds have a higher prevalence and diversity of blood parasites than resident or short-distance migratory species. A phylogenetic reconstruction provided evidence for H. (Haemoproteus) as well as H. (Parahaemoproteus) infections in columbiform birds. Based on microscopic examination, we quantified parasitemia, indicating the probability of negative effects on the host. This study provides a large-scale baseline description of haemosporidian infections of wild birds belonging to the order Columbiformes sampled in the northern hemisphere. The results enable the monitoring of future changes in parasite transmission areas, distribution and diversity associated with global change, posing a potential risk for declining avian species as the European turtle dove.


Author(s):  
Viviana García Pinzón ◽  
Jorge Mantilla

Abstract Based on the conceptualizations of organized crime as both an enterprise and a form of governance, borderland as a spatial category, and borders as institutions, this paper looks at the politics of bordering practices by organized crime in the Colombian-Venezuelan borderlands. It posits that contrary to the common assumptions about transnational organized crime, criminal organizations not only blur or erode the border but rather enforce it to their own benefit. In doing so, these groups set norms to regulate socio-spatial practices, informal and illegal economies, and migration flows, creating overlapping social orders and, lastly, (re)shaping the borderland. Theoretically, the analysis brings together insights from political geography, border studies, and organized crime literature, while empirically, it draws on direct observation, criminal justice data, and in-depth interviews.


2013 ◽  
Vol 10 (81) ◽  
pp. 20120984 ◽  
Author(s):  
James Barber ◽  
Phong D. Tran

Demand for energy is projected to increase at least twofold by mid-century relative to the present global consumption because of predicted population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of carbon dioxide (CO 2 ) emissions demands that stabilizing the atmospheric CO 2 levels to just twice their pre-anthropogenic values by mid-century will be extremely challenging, requiring invention, development and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable and exploitable energy resources, nuclear fusion energy or solar energy are by far the largest. However, in both cases, technological breakthroughs are required with nuclear fusion being very difficult, if not impossible on the scale required. On the other hand, 1 h of sunlight falling on our planet is equivalent to all the energy consumed by humans in an entire year. If solar energy is to be a major primary energy source, then it must be stored and despatched on demand to the end user. An especially attractive approach is to store solar energy in the form of chemical bonds as occurs in natural photosynthesis. However, a technology is needed which has a year-round average conversion efficiency significantly higher than currently available by natural photosynthesis so as to reduce land-area requirements and to be independent of food production. Therefore, the scientific challenge is to construct an ‘artificial leaf’ able to efficiently capture and convert solar energy and then store it in the form of chemical bonds of a high-energy density fuel such as hydrogen while at the same time producing oxygen from water. Realistically, the efficiency target for such a technology must be 10 per cent or better. Here, we review the molecular details of the energy capturing reactions of natural photosynthesis, particularly the water-splitting reaction of photosystem II and the hydrogen-generating reaction of hydrogenases. We then follow on to describe how these two reactions are being mimicked in physico-chemical-based catalytic or electrocatalytic systems with the challenge of creating a large-scale robust and efficient artificial leaf technology.


Sign in / Sign up

Export Citation Format

Share Document