scholarly journals Temperature stable operation of YCOB crystal for giant-pulse green microlaser

2017 ◽  
Vol 25 (6) ◽  
pp. 6431 ◽  
Author(s):  
Arvydas Kausas ◽  
Pascal Loiseau ◽  
Gerard Aka ◽  
Yanqing Zheng ◽  
Lihe Zheng ◽  
...  
Keyword(s):  
Author(s):  
Arvydas Kausas ◽  
Pascal Loiseau ◽  
Gerard Aka ◽  
Yanqing Zheng ◽  
Takunori Taira
Keyword(s):  

2020 ◽  
Vol 22 (1) ◽  
pp. 6-12
Author(s):  
Nelia Volkova ◽  
◽  
Alina Mukhina ◽  

Abstract. Introduction. The issue of financial risk management of commercial banks is quite relevant today, because the activity of banks is the most risky of all. The presence of risks in banking can lead to unexpected losses, namely the loss of own resources. That’s why for the stable operation of the bank without loss the priority is to assess the financial risks, which is the basis for their further neutralization. Purpose. The purpose of the article is to develop conceptual provisions for assessment financial risks and justifying the need to neutralize them. Results. The article analyzes the impact of risks on the financial stability of a banking institution. The main methods of bank risk assessment are considered. All these include the statistical method, the analytical method, the expert method, the analogue method and the combined method. The necessity of neutralization of financial risks in order to avoid negative consequences is substantiated. Also the methods of bank risks neutralization are considered. It should be noted that these methods of neutralization can not only be used, but also supplement the list with new methods must be done, which in the future will protect the bank from the influence of undesirable factors. A conceptual approach to the assessment and neutralization of financial risks is proposed. This conceptual approach aims to ensure effective assessment of the level of risk with their subsequent neutralization Conclusions. Use of a conceptual approach will allow an effective risk assessment and decision-making to avoid or accept risk. Thanks to using this approach, the banking institution will be able to react swiftly to the presence of financial risks and to prevent the occurrence of negative consequences, which may lead to a violation of the financial stability of the bank.


1998 ◽  
Vol 38 (4-5) ◽  
pp. 29-35 ◽  
Author(s):  
C. J. Banks ◽  
P. N. Humphreys

The stability and operational performance of single stage digestion with and without liquor recycle and two stage digestion were assessed using a mixture of paper and wood as the digestion substrate. Attempts to maintain stable digestion in both single stage reactors were unsuccessful due to the inherently low natural buffering capacity exhibited; this resulted in a rapid souring of the reactor due to unbuffered volatile fatty acid (VFA) accumulation. The use of lime to control pH was unsatisfactory due to interference with the carbonate/bicarbonate equilibrium resulting in wide oscillations in the control parameter. The two stage system overcame the pH stability problems allowing stable operation for a period of 200 days without any requirement for pH control; this was attributed to the rapid flushing of VFA from the first stage reactor into the second stage, where efficient conversion to methane was established. Reactor performance was judged to be satisfactory with the breakdown of 53% of influent volatile solids. It was concluded that the reactor configuration of the two stage system offers the potential for the treatment of cellulosic wastes with a sub-optimal carbon to nitrogen ratio for conventional digestion.


Author(s):  
Xu Pei-Zhen ◽  
Lu Yong-Geng ◽  
Cao Xi-Min

Background: Over the past few years, the subsynchronous oscillation (SSO) caused by the grid-connected wind farm had a bad influence on the stable operation of the system and has now become a bottleneck factor restricting the efficient utilization of wind power. How to mitigate and suppress the phenomenon of SSO of wind farms has become the focus of power system research. Methods: This paper first analyzes the SSO of different types of wind turbines, including squirrelcage induction generator based wind turbine (SCIG-WT), permanent magnet synchronous generator- based wind turbine (PMSG-WT), and doubly-fed induction generator based wind turbine (DFIG-WT). Then, the mechanisms of different types of SSO are proposed with the aim to better understand SSO in large-scale wind integrated power systems, and the main analytical methods suitable for studying the SSO of wind farms are summarized. Results: On the basis of results, using additional damping control suppression methods to solve SSO caused by the flexible power transmission devices and the wind turbine converter is recommended. Conclusion: The current development direction of the SSO of large-scale wind farm grid-connected systems is summarized and the current challenges and recommendations for future research and development are discussed.


1997 ◽  
Vol 33 (3) ◽  
pp. 214
Author(s):  
R. LaComb ◽  
D.K. Wagner ◽  
L. DiMarco ◽  
J. Connolly

Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3635 ◽  
Author(s):  
Guoming Zhang ◽  
Xiaoyu Ji ◽  
Yanjie Li ◽  
Wenyuan Xu

As a critical component in the smart grid, the Distribution Terminal Unit (DTU) dynamically adjusts the running status of the entire smart grid based on the collected electrical parameters to ensure the safe and stable operation of the smart grid. However, as a real-time embedded device, DTU has not only resource constraints but also specific requirements on real-time performance, thus, the traditional anomaly detection method cannot be deployed. To detect the tamper of the program running on DTU, we proposed a power-based non-intrusive condition monitoring method that collects and analyzes the power consumption of DTU using power sensors and machine learning (ML) techniques, the feasibility of this approach is that the power consumption is closely related to the executing code in CPUs, that is when the execution code is tampered with, the power consumption changes accordingly. To validate this idea, we set up a testbed based on DTU and simulated four types of imperceptible attacks that change the code running in ARM and DSP processors, respectively. We generate representative features and select lightweight ML algorithms to detect these attacks. We finally implemented the detection system on the windows and ubuntu platform and validated its effectiveness. The results show that the detection accuracy is up to 99.98% in a non-intrusive and lightweight way.


2019 ◽  
Vol 118 ◽  
pp. 02011
Author(s):  
Su Pan ◽  
Yu Pengfeng ◽  
Linbo Liu ◽  
Han Jing ◽  
Xiao Shen

The coal as fired, with unidentified characteristics of the coal gangue, was burned on a 300MW circulating fluidized bed unit. The equipment of the coal conveying system was damaged and the boiler operation was unstable. In response to the problems, the coal quality data and storage conditions of the coal were examined and the site was spot-checked to evaluate the coal quality characteristics. At the same time, the typical representative parameters of the coal handling system and boiler operation were selected. According to the analysis of coal quality and coal storage, the coal quality fluctuates greatly and the uniformity of particle size distribution is poor. There is actually the coal gangue with hard texture and hard to grind in the coal pile. The coal gangue will have adverse effects on the fine screening machine, fine crusher and other equipment. After burned this type of coal, the fluidized quality of the boiler bed is degraded to make an impact on the safe and stable operation of the boiler. It is recommended that the coal should be screened and then burned into the furnace to ensure safe and stable operation of the boiler.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1294 ◽  
Author(s):  
Chuankun Wang ◽  
Yigang He ◽  
Chenyuan Wang ◽  
Xiaoxin Wu ◽  
Lie Li

Due to the diversity of distributed generation sources, microgrid inverters work under complex and changeable conditions. The core device of inverters, an insulated gate bipolar transistor (IGBT), bears a large amount of thermal stress impact, so its reliability is related to the stable operation of the microgrid. The effect of the IGBT aging process cannot be considered adequately with the existing reliability evaluation methods, which have not yet reached the requirements of online evaluation. This paper proposes a fusion algorithm for online reliability evaluation of microgrid inverter IGBT, which combines condition monitoring and reliability evaluation. Firstly, based on the microgrid inverter topology and IGBT characteristics, an electrothermal coupling model is established to obtain junction temperature data. Secondly, the segmented long short-term memory (LSTM) algorithm is studied, which can accurately predict the aging process of the IGBT and judge the aging state via the limited monitoring data. Then, the parameters of the electrothermal coupling model are corrected according to the aging process. Besides, the fusion algorithm is applied to the practical case. Finally, the data comparison verifies the feasibility of the fusion algorithm, whose cumulative damage degree and estimated life error are 5.10% and 5.83%, respectively.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 634
Author(s):  
Sujeong Baek ◽  
Dong Oh Kim

In manufacturing systems, pick-up operations by vacuum grippers may fail owing to manufacturing errors in an object’s surface that are within the allowable tolerance limits. In such situations, manual interference is required to resume system operation, which results in considerable loss of time as well as economic losses. Although vacuum grippers have many advantages and are widely used in the industry, it is highly difficult to directly monitor the current machine status and provide appropriate recovery feedback for stable operation. Therefore, this paper proposes a method to detect the success or failure of a suction operation in advance by analyzing the amount of outlet air pressure in the Venturi line. This was achieved by installing an air pressure sensor on the Venturi line to predict whether the current suction action will be successful. Through empirical experiments, it was found that downward movements in the z-axis of the vacuum gripper can easily rectify a faulty gripper suction operation. Real-time monitoring results verified that predictive process adjustment of the pick-up operation can be performed by modifying the z-position of the vacuum gripper.


Sign in / Sign up

Export Citation Format

Share Document