Novel Approach to Quantitative Depth Profiling of Surfaces Using ATR/FT-IR Measurements

1993 ◽  
Vol 47 (7) ◽  
pp. 973-981 ◽  
Author(s):  
Jiangbing Huang ◽  
Marek W. Urban

Reflection theory for step-wise stratified media is applied to establish the relationship between the reflectivity data obtained from ATR/FT-IR surface depth profiling experiments and the concentration at a given surface depth. In spite of the mathematical complexity of the process, an unknown surface depth profiling can be calculated by using a linear interpolation, or by applying a function with variable parameters. Due to limited assumptions and fairly reasonable computation time, even when the sample is finely divided to achieve high spatial resolution, the linear interpolation approach seems to be particularly advantageous. The proposed methodology is tested for the distribution of surfactant molecules and calculations of the surface depth profiles in latex thin films.

Author(s):  
Liling Cho ◽  
David L. Wetzel

Polarized infrared microscopy has been used for forensic purposes to differentiate among polymer fibers. Dichroism can be used to compare and discriminate between different polyester fibers, including those composed of polyethylene terephthalate that are frequently encountered during criminal casework. In the fiber manufacturering process, fibers are drawn to develop molecular orientation and crystallinity. Macromolecular chains are oriented with respect to the long axis of the fiber. It is desirable to determine the relationship between the molecular orientation and stretching properties. This is particularly useful on a single fiber basis. Polarized spectroscopic differences observed from a single fiber are proposed to reveal the extent of molecular orientation within that single fiber. In the work presented, we compared the dichroic ratio between unstretched and stretched polyester fibers, and the transition point between the two forms of the same fiber. These techniques were applied to different polyester fibers. A fiber stretching device was fabricated for use on the instrument (IRμs, Spectra-Tech) stage. Tension was applied with a micrometer screw until a “neck” was produced in the stretched fiber. Spectra were obtained from an area of 24×48 μm. A wire-grid polarizer was used between the source and the sample.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4397
Author(s):  
Kazuya Kikunaga

A mixture of positive and negative static charges exists in the same plane on an insulator surface, and this can cause production quality problems at manufacturing sites. This study developed a system with a vibration array sensor to rapidly measure the surface potential distribution of an object in a non-contact and non-destructive manner and with a high spatial resolution of 1 mm. The measurement accuracy differed greatly depending on the scanning speed of the array sensor, and an optimum scanning speed of 10 mm/s enabled rapid measurements (within <3 s) of the surface potential distribution of a charged insulator (area of 30 mm × 30 mm) with an accuracy of 15%. The relationship between charge and dust on the surface was clarified to easily visualize the uneven static charges present on it and thereby eliminate static electricity.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2502
Author(s):  
Bogumiła Urbańska ◽  
Hanna Kowalska ◽  
Karolina Szulc ◽  
Małgorzata Ziarno ◽  
Irina Pochitskaya ◽  
...  

The content of polyphenols in chocolate depends on many factors related to the properties of raw material and manufacturing parameters. The trend toward developing chocolates made from unroasted cocoa beans encourages research in this area. In addition, modern customers attach great importance to how the food they consume benefits their bodies. One such benefit that consumers value is the preservation of natural antioxidant compounds in food products (e.g., polyphenols). Therefore, in our study we attempted to determine the relationship between variable parameters at the conching stage (i.e., temperature and time of) and the content of dominant polyphenols (i.e.,catechins, epicatechins, and procyanidin B2) in chocolate milk mass (CMM) obtained from unroasted cocoa beans. Increasing the conching temperature from 50 to 60 °C decreased the content of three basic flavan-3-ols. The highest number of these compounds was determined when the process was carried out at 50 °C. However, the time that caused the least degradation of these compounds differed. For catechin, it was 2 h; for epicatechin it was 1 h; and for procyanidin it was 3 h. The influence of both the temperature and conching time on the rheological properties of chocolate milk mass was demonstrated. At 50 °C, the viscosity and the yield stress of the conched mass showed its highest value.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1054
Author(s):  
Christopher Akhgar ◽  
Vanessa Nürnberger ◽  
Marlene Nadvornik ◽  
Margit Velik ◽  
Andreas Schwaighofer ◽  
...  

In the present study, a novel approach for mid-infrared (IR)-based prediction of bovine milk fatty acid composition is introduced. A rapid, solvent-free, two-step centrifugation method was applied in order to obtain representative milk fat fractions. IR spectra of pure milk lipids were recorded with attenuated total reflection Fourier-transform infrared (ATR-FT-IR) spectroscopy. Comparison to the IR transmission spectra of whole milk revealed a higher amount of significant spectral information for fatty acid analysis. Partial least squares (PLS) regression models were calculated to relate the IR spectra to gas chromatography/mass spectrometry (GC/MS) reference values, providing particularly good predictions for fatty acid sum parameters as well as for the following individual fatty acids: C10:0 (R2P = 0.99), C12:0 (R2P = 0.97), C14:0 (R2P = 0.88), C16:0 (R2P = 0.81), C18:0 (R2P = 0.93), and C18:1cis (R2P = 0.95). The IR wavenumber ranges for the individual regression models were optimized and validated by calculation of the PLS selectivity ratio. Based on a set of 45 milk samples, the obtained PLS figures of merit are significantly better than those reported in literature using whole milk transmission spectra and larger datasets. In this context, direct IR measurement of the milk fat fraction inherently eliminates covariation structures between fatty acids and total fat content, which poses a common problem in IR-based milk fat profiling. The combination of solvent-free lipid separation and ATR-FT-IR spectroscopy represents a novel approach for fast fatty acid prediction, with the potential for high-throughput application in routine lab operation.


2011 ◽  
Vol 239-242 ◽  
pp. 1382-1385
Author(s):  
Na Xu ◽  
Xiao Dong Shen ◽  
Sheng Cui

The electrochromic PANI film was prepared by emulsion polymerization with dodecyl benzene sulphonic acid (DBSA) as dopant and ammonium persulfate (APS) as initiator. Ultrasonic dispersion was adopted in the polymerization. The electrochemical properties, the surface morphology and structure of the prepared PANI film was characterized by means of Fourier Transform infrared spectroscopy (FT-IR), cyclic voltammograms (CV) and field emission scanning electron microscope (FE-SEM), respectively. The relationship between the morphology and properties of PANI film was detailedly discussed. The PANI film exhibited an excellent electrochromism with reversible color changes form yellow to purple. The PANI film also had quite good reaction kinetics with fast switching speed, and the response time for oxidation and reduction were 65 ms and 66 ms, respectively.


1995 ◽  
Vol 49 (10) ◽  
pp. 1516-1524 ◽  
Author(s):  
Alex O. Salnick ◽  
Werner Faubel

Fourier transform infrared photoacoustic spectroscopy (FT-IR/PAS) has proved to be a useful tool for nondestructive testing of copper corrosion layer (patina) formed in the atmosphere. The samples cut from a piece of the roof of the Stockholm City Hall were examined without any additional pretreatment. The components of the patina—brochantite Cu4(OH)6SO4, antlerite Cu3(OH)4SO4, and basic cupric carbonate Cu2CO3(OH)6 · H2O—as well as some other minerals were identified. The photothermal beam deflection (PBD) method was used for independent photoacoustic characterization of the samples. The depth profiling capability of FT-IR/PAS was used to determine the degree of photoacoustic saturation of the spectral bands and to evaluate the depth distribution of the main patina components. The technique thus compares favorably with more common approaches of patina examination which are more expensive and require special sample preparation.


TECHNOLOGY ◽  
2015 ◽  
Vol 03 (02n03) ◽  
pp. 80-83
Author(s):  
Mark Polikovsky ◽  
Eshel Ben-Jacob ◽  
Alin Finkelshtein

Cellulose hydrolysis has many industrial applications such as biofuel production, food, paper and textile manufacture. Here, we present a novel approach to cellulose hydrolysis using a consortium of motile bacteria, Paenibacillus vortex, that can swarm on solid medium carrying a non-motile recombinant E. coli cargo strain expressing the β-glucosidase and cellulase genes that facilitate the hydrolysis of cellulose. These two species cooperate; the relationship is mutually beneficial: the E. coli is dispersed over long distances, while the P. vortex bacteria gain from the supply of cellulose degradation products. This enables the use of such consortia in this area of biotechnology.


2021 ◽  
Vol 11 (5) ◽  
pp. 1980
Author(s):  
Kazimierz Józefiak ◽  
Artur Zbiciak ◽  
Karol Brzeziński ◽  
Maciej Maślakowski

The paper presents classical and non-classical rheological schemes used to formulate constitutive models of the one-dimensional consolidation problem. The authors paid special attention to the secondary consolidation effects in organic soils as well as the soil over-consolidation phenomenon. The systems of partial differential equations were formulated for every model and solved numerically to obtain settlement curves. Selected numerical results were compared with standard oedometer laboratory test data carried out by the authors on organic soil samples. Additionally, plasticity phenomenon and non-classical rheological elements were included in order to take into account soil over-consolidation behaviour in the one-dimensional settlement model. A new way of formulating constitutive equations for the soil skeleton and predicting the relationship between the effective stress and strain or void ratio was presented. Rheological structures provide a flexible tool for creating complex constitutive relationships of soil.


2021 ◽  
Author(s):  
Amalanathan.M ◽  
Aravind.M ◽  
Sony Michael Mary.M ◽  
Razan A. Alshgari ◽  
Asma A. Alothman ◽  
...  

Abstract In this work, jasmine flower derived activated carbon were successfully synthesized by hydrothermal carbonization process at the different annealing temperature. The Crystallinity, phase, structural, morphological and optical properties of activated carbon were investigated using X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), and UV-visible spectroscopy analysis. The graphitic phase of carbon was obtained from the XRD pattern. Surface morphology reveals irregular-shaped nanoparticles. The photodegradation of methylene blue (MB) was carried out under the visible light irradiation technique to study its photocatalytic activity. The activated carbon obtained at 400oC, 500oC and 600oC shows a photocatalytic degradation efficiency of 86%, 90%, and 94%, respectively. Antibacterial activity of activated carbon was examined against S. Aureus (MTCC-737) and E-Coli (MTCC- 443) microbial pathogens, and their potent antibacterial activity was examined from the zone of inhibition layer.


2021 ◽  
Author(s):  
Rishabh Prakash Sharma ◽  
Max P. Cooper ◽  
Anthony J.C. Ladd ◽  
Piotr Szymczak

&lt;p&gt;Dissolution of porous rocks by reactive fluids is a highly nonlinear process resulting in a variety of dissolution patterns, the character of which depends on physical conditions such as flow rate and reactivity of the fluid. Long, finger-like dissolution channels, &amp;#8220;wormholes&amp;#8221;, are the main subject of interest in the literature, however, the underlying dynamics of their growth remains unclear.&amp;#160;&lt;/p&gt;&lt;p&gt;While analyzing the tomography data on wormhole growth.&amp;#160; one open question is to define the exact position of the tip of the wormhole. Near the tip the wormhole gradually thins out and the proper resolution of its features is hindered by the finite spatial resolution of the tomographs. In particular, we often observe in the near-tip region several disconnected regions of porosity growth, which - as we hypothesized - are connected by the dissolution channels at subpixel scale. In this study, we show how these features can be better resolved by using numerically calculated flow fields in the reconstructed pore-space.&amp;#160;&lt;/p&gt;&lt;p&gt;We used 70 micrometers, 16-bit grayscale X-ray computed microtomography (XCMT) time series scans of limestone cores, 14mm in diameter and 25mm in length. Scans were performed during the entire dissolution experiment with an interval of 8 minutes. These scans were further processed using a 3-phase segmentation proposed by Luquot et al.[1], in which grayscale voxels are converted to macro-porosity, micro-porosity and grain phases from their grayscale values. The macro-porous phase is assigned a porosity of 1, while the grain phase is assigned 0. Micro-porous regions are assigned an intermediate value determined by linear interpolation between pore and grain threshold using grayscale values. An OpenFOAM based, Darcy-Brinkman solver, porousFoam, is then used to calculate the flow field in this extracted porosity field.&amp;#160;&lt;/p&gt;&lt;p&gt;Porosity contours reconstructed from the tomographs show some disconnected porosity growth near the tip region which later become part of the wormhole in subsequent scans. We have used a novel approach by including the micro-porosity phase in pore-space to calculate the flow-fields in the near-tip region. The calculated flow fields clearly show an extended region of focused flow in front of the wormhole tip, which is a manifestation of the presence of a wormhole at the subpixel scale. These results show that micro-porosity plays an important role in dissolution and 3-phase segmentation combined with the flow field calculations is able to capture the sub-resolved dissolution channels.&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;[1] Luquot, L., Rodriguez, O., and Gouze, P.: Experimental characterization of porosity structure and transport property changes in limestone undergoing different dissolution regimes, Transport Porous Med., 101, 507&amp;#8211;532, 2014&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document