Characterization of Particulates Accompanying Laser Ablation of NaNO3

1997 ◽  
Vol 51 (5) ◽  
pp. 707-717 ◽  
Author(s):  
R. L. Webb ◽  
J. T. Dickinson ◽  
G. J. Exarhos

We present observations of submicrometer- to micrometer-sized particles generated by high-fluence (≥10 J/cm2) 248-nm laser ablation of single-crystal NaNO3 in vacuum and at atmospheric pressure. Small particles (50–200 nm in diameter) are ejected by hydrodynamic sputtering. Larger particles (1–20 μm in diameter) are produced by cavitation and spallation in the melt. Many particles formed in air carry electric charge, with roughly equal numbers of positively and negatively charged particles. The particle composition is consistent with substantial nitrate decomposition. The implications of these observations with respect to laser-based chemical analysis are discussed.

2014 ◽  
Vol 798-799 ◽  
pp. 3-8 ◽  
Author(s):  
Jonas Alexandre ◽  
Afonso Rangel Garcez de Azevedo ◽  
Gustavo de Castro Xavier ◽  
Leonardo Gonçalves Pedroti ◽  
Carlos Maurício Fontes Vieira ◽  
...  

The mining and processing of limestone in the state of Rio de Janeiro, southeast of Brazil, generates a considerable amount of small particles, like a powder ,which is commercialized as a by product. In principle, this inert limestone powder could be recycled as part of another civil construction material. Thus, the objective of this work was to characterize a limestone powder by its physical properties, chemical analysis and microstructural aspects. The results were compared with the characteristics of a common cement and a conventional sand to be possibly applied in the fabrication of limestone incorporated concrete blocks. It was found that the limestone powder has physical, chemical and microstructural characteristics satisfactory for concrete blocks incorporation.


2011 ◽  
Vol 20 (4) ◽  
Author(s):  
M. D. Calzada ◽  
J. Muñoz ◽  
R. Rincón ◽  
M. Jiménez ◽  
M. Sáez

AbstractSeveral applications, such as metal surface nitriding, medical instrument sterilization and chemical analysis, have been developed or improved using a gas mixture as plasmogen gas. Research carried out on these subjects covers the aspect of knowing the processes that take place in plasmas which depend on the densities of the different plasma particles and their energy values. In this paper, the results obtained from the application of spectroscopic techniques for the characterization of surface wave discharges at the atmospheric pressure, generated with more than one gas type, are presented, particularly for the Ar-He, Ar-Ne and Ar-N


Author(s):  
K.M. Jones ◽  
M.M. Al-Jassim ◽  
J.M. Olson

The epitaxial growth of III-V semiconductors on Si for integrated optoelectronic applications is currently of great interest. GaP, with a lattice constant close to that of Si, is an attractive buffer between Si and, for example, GaAsP. In spite of the good lattice match, the growth of device quality GaP on Si is not without difficulty. The formation of antiphase domains, the difficulty in cleaning the Si substrates prior to growth, and the poor layer morphology are some of the problems encountered. In this work, the structural perfection of GaP layers was investigated as a function of several process variables including growth rate and temperature, and Si substrate orientation. The GaP layers were grown in an atmospheric pressure metal organic chemical vapour deposition (MOCVD) system using trimethylgallium and phosphine in H2. The Si substrates orientations used were (100), 2° off (100) towards (110), (111) and (211).


Author(s):  
M. José-Yacamán

Electron microscopy is a fundamental tool in materials characterization. In the case of nanostructured materials we are looking for features with a size in the nanometer range. Therefore often the conventional TEM techniques are not enough for characterization of nanophases. High Resolution Electron Microscopy (HREM), is a key technique in order to characterize those materials with a resolution of ~ 1.7A. High resolution studies of metallic nanostructured materials has been also reported in the literature. It is concluded that boundaries in nanophase materials are similar in structure to the regular grain boundaries. That work therefore did not confirm the early hipothesis on the field that grain boundaries in nanostructured materials have a special behavior. We will show in this paper that by a combination of HREM image processing, and image calculations, it is possible to prove that small particles and coalesced grains have a significant surface roughness, as well as large internal strain.


Author(s):  
Nancy Van Suetendael ◽  
Kristie Powell ◽  
Susan Earles ◽  
Mary Helen McCay ◽  
Ivica Kostanic
Keyword(s):  

2015 ◽  
Vol 2 (2) ◽  
pp. 70-73
Author(s):  
Kannan.P ◽  
Thambidurai.S ◽  
Suresh.N

Growth of optically transparent single crystals of thiourea succinic acid (TUSA) was grown successfully from aqueous solution by slow evaporation technique. The crystal structure was elucidated using the single crystal XRD. The various functional groups and the modes of vibrations were identified by FT-IR spectroscopic analysis. The optical absorption studies indicate that the optical transparency window is quite wide making its suitable for NLO applications. Thermal stability of the crown crystal carried out by TGA-DTA analysis.


Author(s):  
P. Schwindenhammer ◽  
H. Murray ◽  
P. Descamps ◽  
P. Poirier

Abstract Decapsulation of complex semiconductor packages for failure analysis is enhanced by laser ablation. If lasers are potentially dangerous for Integrated Circuits (IC) surface they also generate a thermal elevation of the package during the ablation process. During measurement of this temperature it was observed another and unexpected electrical phenomenon in the IC induced by laser. It is demonstrated that this new phenomenon is not thermally induced and occurs under certain ablation conditions.


2009 ◽  
Vol 59 (12) ◽  
Author(s):  
Mihaela Flondor ◽  
Ioan Rosca ◽  
Doina Sibiescu ◽  
Mihaela-Aurelia Vizitiu ◽  
Daniel-Mircea Sutiman ◽  
...  

In this paper the synthesis and the study of some complex compounds of Fe(III) with ligands derived from: 2-(4-chloro-phenylsulfanyl)-1-(2-hydroxy-3,5-diiodo-phenyl)-ethanone (HL1), 1-(3,5-dibromo-2-hydroxy-phenyl)-2-phenylsulfanyl-ethanone(HL2), and 2-(4-chloro-phenylsulfanyl)-1-(3,5-dibromo-2-hydroxy-phenyl)-ethanone (HL3) is presented. The characterization of these complexes is based on method as: the elemental chemical analysis, IR and ESR spectroscopy, M�ssbauer, the thermogravimetric analysis and X-ray diffraction. Study of the IR and chemical analysis has evidenced that the precipitates form are a complexes and the combination ratio of M:L is 1:2. The central atoms of Fe(III) presented paramagnetic properties and a octaedric hybridization. Starting from this precipitation reactions, a method for the gravimetric determination of Fe(III) with this organic ligands has been possible. Based on the experimental data on literature indications, the structural formulae of the complex compounds are assigned.


Sign in / Sign up

Export Citation Format

Share Document