scholarly journals Discovery of Transcription Factors and Regulatory Regions Driving In Vivo Tumor Development by ATAC-seq and FAIRE-seq Open Chromatin Profiling

PLoS Genetics ◽  
2015 ◽  
Vol 11 (2) ◽  
pp. e1004994 ◽  
Author(s):  
Kristofer Davie ◽  
Jelle Jacobs ◽  
Mardelle Atkins ◽  
Delphine Potier ◽  
Valerie Christiaens ◽  
...  
2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Rachesh Sharma ◽  
Neetesh Pandey ◽  
Aanchal Mongia ◽  
Shreya Mishra ◽  
Angshul Majumdar ◽  
...  

Abstract The advent of single-cell open-chromatin profiling technology has facilitated the analysis of heterogeneity of activity of regulatory regions at single-cell resolution. However, stochasticity and availability of low amount of relevant DNA, cause high drop-out rate and noise in single-cell open-chromatin profiles. We introduce here a robust method called as forest of imputation trees (FITs) to recover original signals from highly sparse and noisy single-cell open-chromatin profiles. FITs makes multiple imputation trees to avoid bias during the restoration of read-count matrices. It resolves the challenging issue of recovering open chromatin signals without blurring out information at genomic sites with cell-type-specific activity. Besides visualization and classification, FITs-based imputation also improved accuracy in the detection of enhancers, calculating pathway enrichment score and prediction of chromatin-interactions. FITs is generalized for wider applicability, especially for highly sparse read-count matrices. The superiority of FITs in recovering signals of minority cells also makes it highly useful for single-cell open-chromatin profile from in vivo samples. The software is freely available at https://reggenlab.github.io/FITs/.


2020 ◽  
Author(s):  
Rachesh Sharma ◽  
Neetesh Pandey ◽  
Anchal Mongia ◽  
Shreya Mishra ◽  
Angshul Majumdar ◽  
...  

AbstractThe advent of single-cell open-chromatin profiling technology has facilitated the analysis of heterogeneity of activity of regulatory regions at single-cell resolution. However, stochasticity and availability of low amount of relevant DNA cause high drop-out rate and noise in single-cell open-chromatin profiles. We introduce here a robust method called as Forest of Imputation Trees (FITs) to recover original signals from highly sparse and noisy single-cell open-chromatin profiles. FITs makes a forest of imputation trees to avoid bias during the restoration of read-count matrices. It resolves the challenging issue of recovering open chromatin signals without blurring out information at genomic sites with cell-type-specific activity. FITs is generalized for wider applicability, especially for highly sparse read-count matrices. The superiority of FITs in recovering signals of minority cells also makes it highly useful for single-cell open-chromatin profile from in vivo samples.First made online as thesis work at https://repository.iiitd.edu.in/xmlui/handle/123456789/807


2006 ◽  
Vol 80 (9) ◽  
pp. 4356-4362 ◽  
Author(s):  
Andrew Carson ◽  
Saleem A. Khan

ABSTRACT Human papillomaviruses (HPVs) require terminal differentiation of the host cell to produce infectious virions. The process of viral maturation involves a variety of changes in the expression/activity of host proteins that lead to high-level replication of the viral genome and expression of the late viral genes. Although the late promoter regions of HPV type 16 (HPV-16) are still not fully characterized, differentiation-dependent regulation of viral genes is thought to involve changes in the binding of host cell transcription factors to the viral promoter and regulatory regions. Currently, very little is known about specific cellular transcription factors involved in this process. We used the Panomics TransSignal protein/DNA array to identify changes in the levels of cellular transcription factors during methylcellulose-induced differentiation of W12 (20863) cells containing HPV-16. We then identified the differentially expressed transcription factors that specifically bind to HPV-16 DNA, including the known promoter and regulatory regions. We have validated the results obtained from the Panomics array by Western blot analysis. Furthermore, by chromatin immunoprecipitation assays, we have shown that many of the transcription factors identified in the above screen bind to the HPV-16 promoter/regulatory sequences in vivo and that the level of this binding is increased during differentiation. This approach identified approximately 30 transcription factors that specifically bind to HPV-16 sequences and may be involved in regulating HPV-16 transcription during differentiation. Although some of these transcription factors have previously been suggested to be involved in HPV-16 transcription, a number of them represent novel viral DNA-host protein interactions.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 364-364 ◽  
Author(s):  
Rachel West ◽  
Mitchell Ermentrout ◽  
Catherine Ackley ◽  
Christopher H. Lowrey

Abstract The GATA-1 transcription factor is involved in the expression of most, if not all erythroid genes. In vitro, GATA-1 binds the WGATAR consensus and related sequences. If GATA-1 binding to DNA in nuclear chromatin were only dependent on these recognition sequences, there would be roughly 3 million sites per genome – or approximately 1 site per 1000 bp. The alternative is that mechanisms beyond the consensus sequence are involved in targeting GATA-1 (and other transcription factors) to sites in chromatin. To investigate which model is correct, we performed GATA-1 ChIP assays in MEL cells on 9 WGATAR sites in the murine β-globin gene locus that were not associated with known regulatory elements. GATA-1 bound to none of these sites, while it did bind to positive control sites in LCR HS2 and the GATA-1 promoter. This implied that factors other than DNA sequence are involved in GATA-1 targeting. We hypothesized that factor binding sites flanking the WGATAR motifs are necessary for GATA-1 binding. To test this idea, we chose the human LCR HS4 core as a model. Here, a cluster of 6 binding sites, contained within ~100 bp, is found in the following arrangement: 5′-K-N-K-GG-K-3′ (K=Krupple-like factor, N=NF-E2, G=GATA). To determine which sites were required for GATA-1 binding, we used site-directed mutagenesis to insert combinations of the sites into a non-expressed fragment of DNA in a pUC-based plasmid. Constructs were then stably transfected into MEL cells and pools of 25 clones were analyzed for GATA-1 binding to the integrated test sites. Each ChIP assay was performed in triplicate and analyzed by quantitative RT-PCR, also in triplicate. Internal positive and negative control sites for GATA-1 binding were included for each ChIP assay. GATA-1 did not bind the following constructs in vivo: no sites, N alone, GG alone, N-GG, N-K-GG, N-K-GG-K, and K-N-K-GG. Only when all sites were present, K-N-K-GG-K, did GATA-1 bind. These results showed that both the 5′ and 3′ flanking KLF sites were necessary for GATA-1 binding. To determine whether they were also sufficient for GATA-1 binding, we next evaluated K-K and K-GG-K constructs, where the K sites were the 5′ and 3′ flanking sites in their normal locations. While both the K-K and K-GG-K constructs formed DNAse I HSs and directed H3 hyperacetylation in the region (the control without binding sites showed neither characteristic), indicating that the site was accessible for factor binding, the K-GG-K construct still did not bind GATA-1. We next treated cells containing the GG construct with trichostatin A to verify that histone hyperacetylation alone was insufficient to allow GATA-1 binding. Despite a large increase in total H3 acetylation (Western blot) and a doubling of local H3 acetylation (ChIP), GATA-1 still did not bind the GG construct. Based on these results we propose a mechanism for GATA-1 binding to the LCR HS4 core in which flanking KLF sites initially bind factors that form a localized “mini-domain” characterized by histone hyperacetylation, HS formation and trans-factor accessibility, but that factors binding to the NF-E2 and/or the internal KLF site are required for stabilizing GATA-1 binding within this open chromatin domain. These results are relevant not only to GATA-1 binding, but to understanding how transcription factors, in general, are targeted to specific sites in nuclear chromatin.


2020 ◽  
Author(s):  
Satyanarayan Rao ◽  
Kami Ahmad ◽  
Srinivas Ramachandran

AbstractEnhancers harbor binding motifs that recruit transcription factors (TFs) for gene activation. While cooperative binding of TFs at enhancers is known to be critical for transcriptional activation of a handful of developmental enhancers, the extent TF cooperativity genome-wide is unknown. Here, we couple high-resolution nuclease footprinting with single-molecule methylation profiling to characterize TF cooperativity at active enhancers in the Drosophila genome. Enrichment of short MNase-protected DNA segments indicates that the majority of enhancers harbor two or more TF binding sites, and we uncover protected fragments that correspond to co-bound sites in thousands of enhancers. We integrate MNase-seq, methylation accessibility profiling, and CUT&RUN chromatin profiling as a comprehensive strategy to characterize co-binding of the Trithorax-like (TRL) DNA binding protein and multiple other TFs and identify states where an enhancer is bound by no TF, by either single factor, by multiple factors, or where binding sites are occluded by nucleosomes. From the analysis of co-binding, we find that cooperativity dominates TF binding in vivo at a majority of active enhancers. TF cooperativity can occur without apparent protein-protein interactions and provides a mechanism to effectively clear nucleosomes and promote enhancer function.


Author(s):  
А.А. Раецкая ◽  
С.В. Калиш ◽  
С.В. Лямина ◽  
Е.В. Малышева ◽  
О.П. Буданова ◽  
...  

Цель исследования. Доказательство гипотезы, что репрограммированные in vitro на М3 фенотип макрофаги при введении в организм будут существенно ограничивать развитие солидной карциномы in vivo . Методика. Рост солидной опухоли инициировали у мышей in vivo путем подкожной инъекции клеток карциномы Эрлиха (КЭ). Инъекцию макрофагов с нативным М0 фенотипом и с репрограммированным M3 фенотипом проводили в область формирования солидной КЭ. Репрограммирование проводили с помощью низких доз сыворотки, блокаторов факторов транскрипции STAT3/6 и SMAD3 и липополисахарида. Использовали две схемы введения макрофагов: раннее и позднее. При раннем введении макрофаги вводили на 1-е, 5-е, 10-е и 15-е сут. после инъекции клеток КЭ путем обкалывания макрофагами с четырех сторон область развития опухоли. При позднем введении, макрофаги вводили на 10-е, 15-е, 20-е и 25-е сут. Через 15 и 30 сут. после введения клеток КЭ солидную опухоль иссекали и измеряли ее объем. Эффект введения макрофагов оценивали качественно по визуальной и пальпаторной характеристикам солидной опухоли и количественно по изменению ее объема по сравнению с группой без введения макрофагов (контроль). Результаты. Установлено, что M3 макрофаги при раннем введении от начала развития опухоли оказывают выраженный антиопухолевый эффект in vivo , который был существенно более выражен, чем при позднем введении макрофагов. Заключение. Установлено, что введение репрограммированных макрофагов M3 ограничивает развитие солидной карциномы в экспериментах in vivo . Противоопухолевый эффект более выражен при раннем введении М3 макрофагов. Обнаруженные в работе факты делают перспективным разработку клинической версии биотехнологии ограничения роста опухоли, путем предварительного программирования антиопухолевого врожденного иммунного ответа «в пробирке». Aim. To verify a hypothesis that macrophages reprogrammed in vitro to the M3 phenotype and injected into the body substantially restrict the development of solid carcinoma in vivo . Methods. Growth of a solid tumor was initiated in mice in vivo with a subcutaneous injection of Ehrlich carcinoma (EC) cells. Macrophages with a native M0 phenotype or reprogrammed towards the M3 phenotype were injected into the region of developing solid EC. Reprogramming was performed using low doses of serum, STAT3/6 and SMAD3 transcription factor blockers, and lipopolysaccharide. Two schemes of macrophage administration were used: early and late. With the early administration, macrophages were injected on days 1, 5, 10, and 15 following the injection of EC cells at four sides of the tumor development area. With the late administration, macrophages were injected on days 10, 15, 20, and 25. At 15 and 30 days after the EC cell injection, the solid tumor was excised and its volume was measured. The effect of macrophage administration was assessed both qualitatively by visual and palpation characteristics of solid tumor and quantitatively by changes in the tumor volume compared with the group without the macrophage treatment. Results. M3 macrophages administered early after the onset of tumor development exerted a pronounced antitumor effect in vivo , which was significantly greater than the antitumor effect of the late administration of M3 macrophages. Conclusion. The observed significant inhibition of in vivo growth of solid carcinoma by M3 macrophages makes promising the development of a clinical version of the biotechnology for restriction of tumor growth by in vitro pre-programming of the antitumor, innate immune response.


2019 ◽  
Vol 20 (6) ◽  
pp. 625-634 ◽  
Author(s):  
Xun Che ◽  
Wei Dai

AhR is an environmental response gene that mediates cellular responses to a variety of xenobiotic compounds that frequently function as AhR ligands. Many AhR ligands are classified as carcinogens or pro-carcinogens. Thus, AhR itself acts as a major mediator of the carcinogenic effect of many xenobiotics in vivo. In this concise review, mechanisms by which AhR trans-activates downstream target gene expression, modulates immune responses, and mediates malignant transformation and tumor development are discussed. Moreover, activation of AhR by post-translational modifications and crosstalk with other transcription factors or signaling pathways are also summarized.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Manuel Pedro Jimenez-García ◽  
Antonio Lucena-Cacace ◽  
Daniel Otero-Albiol ◽  
Amancio Carnero

AbstractThe EMX (Empty Spiracles Homeobox) genes EMX1 and EMX2 are two homeodomain gene members of the EMX family of transcription factors involved in the regulation of various biological processes, such as cell proliferation, migration, and differentiation, during brain development and neural crest migration. They play a role in the specification of positional identity, the proliferation of neural stem cells, and the differentiation of certain neuronal cell phenotypes. In general, they act as transcription factors in early embryogenesis and neuroembryogenesis from metazoans to higher vertebrates. The EMX1 and EMX2’s potential as tumor suppressor genes has been suggested in some cancers. Our work showed that EMX1/EMX2 act as tumor suppressors in sarcomas by repressing the activity of stem cell regulatory genes (OCT4, SOX2, KLF4, MYC, NANOG, NES, and PROM1). EMX protein downregulation, therefore, induced the malignance and stemness of cells both in vitro and in vivo. In murine knockout (KO) models lacking Emx genes, 3MC-induced sarcomas were more aggressive and infiltrative, had a greater capacity for tumor self-renewal, and had higher stem cell gene expression and nestin expression than those in wild-type models. These results showing that EMX genes acted as stemness regulators were reproduced in different subtypes of sarcoma. Therefore, it is possible that the EMX genes could have a generalized behavior regulating proliferation of neural crest-derived progenitors. Together, these results indicate that the EMX1 and EMX2 genes negatively regulate these tumor-altering populations or cancer stem cells, acting as tumor suppressors in sarcoma.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Takashi Nishina ◽  
Yutaka Deguchi ◽  
Daisuke Ohshima ◽  
Wakami Takeda ◽  
Masato Ohtsuka ◽  
...  

AbstractInterleukin (IL)-11 is a member of the IL-6 family of cytokines and is involved in multiple cellular responses, including tumor development. However, the origin and functions of IL-11-producing (IL-11+) cells are not fully understood. To characterize IL-11+ cells in vivo, we generate Il11 reporter mice. IL-11+ cells appear in the colon in murine tumor and acute colitis models. Il11ra1 or Il11 deletion attenuates the development of colitis-associated colorectal cancer. IL-11+ cells express fibroblast markers and genes associated with cell proliferation and tissue repair. IL-11 induces the activation of colonic fibroblasts and epithelial cells through phosphorylation of STAT3. Human cancer database analysis reveals that the expression of genes enriched in IL-11+ fibroblasts is elevated in human colorectal cancer and correlated with reduced recurrence-free survival. IL-11+ fibroblasts activate both tumor cells and fibroblasts via secretion of IL-11, thereby constituting a feed-forward loop between tumor cells and fibroblasts in the tumor microenvironment.


Sign in / Sign up

Export Citation Format

Share Document