scholarly journals Differential transcript usage in the Parkinson’s disease brain

PLoS Genetics ◽  
2020 ◽  
Vol 16 (11) ◽  
pp. e1009182
Author(s):  
Fiona Dick ◽  
Gonzalo S. Nido ◽  
Guido Werner Alves ◽  
Ole-Bjørn Tysnes ◽  
Gry Hilde Nilsen ◽  
...  

Studies of differential gene expression have identified several molecular signatures and pathways associated with Parkinson’s disease (PD). The role of isoform switches and differential transcript usage (DTU) remains, however, unexplored. Here, we report the first genome-wide study of DTU in PD. We performed RNA sequencing following ribosomal RNA depletion in prefrontal cortex samples of 49 individuals from two independent case-control cohorts. DTU was assessed using two transcript-count based approaches, implemented in the DRIMSeq and DEXSeq tools. Multiple PD-associated DTU events were detected in each cohort, of which 23 DTU events in 19 genes replicated across both patient cohorts. For several of these, including THEM5, SLC16A1 and BCHE, DTU was predicted to have substantial functional consequences, such as altered subcellular localization or switching to non-protein coding isoforms. Furthermore, genes with PD-associated DTU were enriched in functional pathways previously linked to PD, including reactive oxygen species generation and protein homeostasis. Importantly, the vast majority of genes exhibiting DTU were not differentially expressed at the gene-level and were therefore not identified by conventional differential gene expression analysis. Our findings provide the first insight into the DTU landscape of PD and identify novel disease-associated genes. Moreover, we show that DTU may have important functional consequences in the PD brain, since it is predicted to alter the functional composition of the proteome. Based on these results, we propose that DTU analysis is an essential complement to differential gene expression studies in order to provide a more accurate and complete picture of disease-associated transcriptomic alterations.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Abigail L. Pfaff ◽  
Vivien J. Bubb ◽  
John P. Quinn ◽  
Sulev Koks

AbstractThe development of Parkinson’s disease (PD) involves a complex interaction of genetic and environmental factors. Genome-wide association studies using extensive single nucleotide polymorphism datasets have identified many loci involved in disease. However much of the heritability of Parkinson’s disease is still to be identified and the functional elements associated with the risk to be determined and understood. To investigate the component of PD that may involve complex genetic variants we characterised the hominid specific retrotransposon SINE-VNTR-Alus (SVAs) in the Parkinson’s Progression Markers Initiative cohort utilising whole genome sequencing. We identified 81 reference SVAs polymorphic for their presence/absence, seven of which were associated with the progression of the disease and with differential gene expression in whole blood RNA sequencing data. This study highlights the importance of addressing SVA variants and potentially other types of retrotransposons in PD genetics, furthermore, these SVA elements should be considered as regulatory domains that could play a role in disease progression.


2020 ◽  
Author(s):  
Abigail L Pfaff ◽  
Vivien J. Bubb ◽  
John P. Quinn ◽  
Sulev Koks

Abstract Background: The development of Parkinson’s disease (PD) involves a complex interaction of genetic and environmental factors. The majority of studies investigating the genetic component of complex diseases, including PD, have focused on single nucleotide polymorphisms as this enables genome wide analysis of a large number of samples. Genome wide association studies have been crucial in identifying PD risk variants, however a large proportion of the heritability of PD remains to be identified. To investigate the component of PD that may involve complex genetic variants we characterised SINE-VNTR-Alus (SVAs), a retrotransposon known to affect gene expression, in the Parkinson’s Progression Markers Initiative (PPMI) cohort.Results: Utilising whole genome sequencing from the PPMI cohort that consisted of 179 healthy controls, 371 individuals with PD and 58 individuals classified as SWEDD (scans without evidence of dopaminergic deficit) we genotyped SVAs in the reference genome for their presence or absence identifying 81 such SVAs. Seven of these SVAs were associated with progression of the disease, including four whose specific genotypes were linked to an increase in the gradient of dopaminergic loss when comparing the caudate to putamen from DaTscan imaging analysis. These seven SVAs also demonstrated regulatory properties as they were associated with differential gene expression in whole blood RNA sequencing data.Conclusion: This study highlights the importance of addressing variation of SVAs and potentially other types of retrotransposons in PD genetics, furthermore these SVA elements should be considered as regulatory domains that could play a role in disease progression.


2020 ◽  
Author(s):  
Roberto Navarro Quiroz ◽  
Ana Ligia Scott ◽  
Eric Allison Philot ◽  
Linda Atencio ◽  
Cecilia Fernandez Ponce ◽  
...  

AbstractBackgroundThe human dopamine transporter is the main regulator of dopamine tone and an intricate network exists to regulate the expression, conformation, and kinetics of the hDAT. hDAT dysfunction is directly related to Parkinson’s disease. The objective of this work is to evaluate the differential gene expression in the interactome of the Dopamine transporter in the context of Parkinson’s disease.MethodsTo do this, we evaluated hDAT interaction data in string-db, mint.bio, IntAct, reactome, hprd and BioGRID, subsequently, data was obtained from the differential gene expression of mRNA and miRNAs for this hDAT interactome in the context of PD.ResultsThe analysis of the differential expression changes of genes of the hDAT interactome in tissues of patients with PD compared with tissues of individuals without PD, allowed to identify an expression pattern of 32 components of the hDAT interactome, of which 31 presented a negative change proportion in PD.ConclusionsWe found a total of 90 miRNAs that could regulate the expression of 27 components of the hDAT interactome, at the same time, 39 components of the hDAT interactome may participate in 40 metabolic pathways. Together, these findings show a systematic effect on the hDAT-mediated dopamine internalization process in patients with Parkinson’s, which would contribute to a greater susceptibility to neuronal oxidative stress in PD patients.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Saivageethi Nuthikattu ◽  
Dragan Milenkovic ◽  
John Rutledge ◽  
Amparo Villablanca

AbstractHyperlipidemia is a risk factor for dementia, and chronic consumption of a Western Diet (WD) is associated with cognitive impairment. However, the molecular mechanisms underlying the development of microvascular disease in the memory centers of the brain are poorly understood. This pilot study investigated the nutrigenomic pathways by which the WD regulates gene expression in hippocampal brain microvessels of female mice. Five-week-old female low-density lipoprotein receptor deficient (LDL-R−/−) and C57BL/6J wild type (WT) mice were fed a chow or WD for 8 weeks. Metabolics for lipids, glucose and insulin were determined. Differential gene expression, gene networks and pathways, transcription factors, and non-protein coding RNAs were evaluated by genome-wide microarray and bioinformatics analysis of laser captured hippocampal microvessels. The WD resulted in differential expression of 2,412 genes. The majority of differential gene expression was attributable to differential regulation of cell signaling proteins and their transcription factors, approximately 7% was attributable to differential expression of miRNAs, and a lesser proportion was due to other non-protein coding RNAs, primarily long non-coding RNAs (lncRNAs) and small nucleolar RNAs (snoRNAs) not previously described to be modified by the WD in females. Our findings revealed that chronic consumption of the WD resulted in integrated multilevel molecular regulation of the hippocampal microvasculature of female mice and may provide one of the mechanisms underlying vascular dementia.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Gabriela Novak ◽  
Dimitrios Kyriakis ◽  
Kamil Grzyb ◽  
Michela Bernini ◽  
Sophie Rodius ◽  
...  

AbstractParkinson’s disease (PD) is the second-most prevalent neurodegenerative disorder, characterized by the loss of dopaminergic neurons (mDA) in the midbrain. The underlying mechanisms are only partly understood and there is no treatment to reverse PD progression. Here, we investigated the disease mechanism using mDA neurons differentiated from human induced pluripotent stem cells (hiPSCs) carrying the ILE368ASN mutation within the PINK1 gene, which is strongly associated with PD. Single-cell RNA sequencing (RNAseq) and gene expression analysis of a PINK1-ILE368ASN and a control cell line identified genes differentially expressed during mDA neuron differentiation. Network analysis revealed that these genes form a core network, members of which interact with all known 19 protein-coding Parkinson’s disease-associated genes. This core network encompasses key PD-associated pathways, including ubiquitination, mitochondrial function, protein processing, RNA metabolism, and vesicular transport. Proteomics analysis showed a consistent alteration in proteins of dopamine metabolism, indicating a defect of dopaminergic metabolism in PINK1-ILE368ASN neurons. Our findings suggest the existence of a network onto which pathways associated with PD pathology converge, and offers an inclusive interpretation of the phenotypic heterogeneity of PD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Samuel B. Anyona ◽  
Evans Raballah ◽  
Qiuying Cheng ◽  
Ivy Hurwitz ◽  
Caroline Ndege ◽  
...  

Background: Malaria remains one of the leading global causes of childhood morbidity and mortality. In holoendemic Plasmodium falciparum transmission regions, such as western Kenya, severe malarial anemia [SMA, hemoglobin (Hb) < 6.0 g/dl] is the primary form of severe disease. Ubiquitination is essential for regulating intracellular processes involved in innate and adaptive immunity. Although dysregulation in ubiquitin molecular processes is central to the pathogenesis of multiple human diseases, the expression patterns of ubiquitination genes in SMA remain unexplored.Methods: To examine the role of the ubiquitination processes in pathogenesis of SMA, differential gene expression profiles were determined in Kenyan children (n = 44, aged <48 mos) with either mild malarial anemia (MlMA; Hb ≥9.0 g/dl; n = 23) or SMA (Hb <6.0 g/dl; n = 21) using the Qiagen Human Ubiquitination Pathway RT2 Profiler PCR Array containing a set of 84 human ubiquitination genes.Results: In children with SMA, 10 genes were down-regulated (BRCC3, FBXO3, MARCH5, RFWD2, SMURF2, UBA6, UBE2A, UBE2D1, UBE2L3, UBR1), and five genes were up-regulated (MDM2, PARK2, STUB1, UBE2E3, UBE2M). Enrichment analyses revealed Ubiquitin-Proteasomal Proteolysis as the top disrupted process, along with altered sub-networks involved in proteasomal, protein, and ubiquitin-dependent catabolic processes.Conclusion: Collectively, these novel results show that protein coding genes of the ubiquitination processes are involved in the pathogenesis of SMA.


Sign in / Sign up

Export Citation Format

Share Document