scholarly journals High-throughput screening and genome-wide analyses of 44 anticancer drugs in the 1000 Genomes cell lines reveals an association of the NQO1 gene with the response of multiple anticancer drugs

PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009732
Author(s):  
Farida S. Akhtari ◽  
Adrian J. Green ◽  
George W. Small ◽  
Tammy M. Havener ◽  
John S. House ◽  
...  

Cancer patients exhibit a broad range of inter-individual variability in response and toxicity to widely used anticancer drugs, and genetic variation is a major contributor to this variability. To identify new genes that influence the response of 44 FDA-approved anticancer drug treatments widely used to treat various types of cancer, we conducted high-throughput screening and genome-wide association mapping using 680 lymphoblastoid cell lines from the 1000 Genomes Project. The drug treatments considered in this study represent nine drug classes widely used in the treatment of cancer in addition to the paclitaxel + epirubicin combination therapy commonly used for breast cancer patients. Our genome-wide association study (GWAS) found several significant and suggestive associations. We prioritized consistent associations for functional follow-up using gene-expression analyses. The NAD(P)H quinone dehydrogenase 1 (NQO1) gene was found to be associated with the dose-response of arsenic trioxide, erlotinib, trametinib, and a combination treatment of paclitaxel + epirubicin. NQO1 has previously been shown as a biomarker of epirubicin response, but our results reveal novel associations with these additional treatments. Baseline gene expression of NQO1 was positively correlated with response for 43 of the 44 treatments surveyed. By interrogating the functional mechanisms of this association, the results demonstrate differences in both baseline and drug-exposed induction.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4811-4811
Author(s):  
Joanna S. Yi ◽  
Alex Federation ◽  
Jun Qi ◽  
Sirano Dhe-Paganon ◽  
Michael Hadler ◽  
...  

Abstract Cooperation between several epigenetic modulators defines MLL-rearranged leukemia as an epigenomic-driven cancer. Wild type MLL catalyzes trimethylation of lysine 4 on histone 3 from the methyl donor S-adenosylmethionine (SAM) at homeobox and other genes important for hematopoiesis, promoting their expression during development. However, in MLL-rearrangements, its methyltransferase domain is ubiquitously lost and replaced with >70 known fusion partners. Many of these fusion partners recruit DOT1L, the only known SAM-dependent lysine methyltransferase responsible for the methylation of lysine 79 of histone 3 (H3K79)—a mark associated with most actively transcribed genes. Therefore, the recruitment of DOT1L by MLL fusion partners to MLL-target genes leads to aberrant H3K79 hypermethylation at these loci, resulting in inappropriate gene expression and leukemogenesis. DOT1L as a therapeutic target in MLL has been genetically validated by several groups, leading to the development of SAM-competitive small molecule inhibitors of DOT1L. These inhibitors exhibit excellent biochemical activity and selectivity, yet have delayed cellular activity and needing relatively high doses, with viability effects requiring 7-10 days and EC50s for H3K79 methylation depletion of 1-3 μM in cell lines. In animal studies, this translates to a modest survival benefit while requiring high doses through continuous osmotic subcutaneous infusion. Further optimization of DOT1L inhibitors is therefore needed. To date, development of DOT1L inhibitors has been slow, perhaps related to inadequacy of discovery chemistry assay technologies. All biochemical assays are radioactivity-based and are not miniaturizeable; low-throughput and delayed cellular effects of DOT1L inhibition all hamper the discovery of improved inhibitors. Therefore a pressing need towards improved DOT1L inhibitor discovery is a robust, accessible, and rapid profiling platform. Toward this goal, we synthesized both FITC- and biotin-tagged DOT1L probe ligands. We confirmed by structural studies that binding of the probes were similar to our previously published inhibitor, depleted H3K79 methylation, and had antiproliferative effects in MLL-rearranged cell lines. We then utilized the probes to devise two non-radioactive, orthogonal biochemical assays to competitively profile putative inhibitors: one employing bead-based, proxmity fluorescence technology and the second using fluorescence polarization technology. These assays are robust and adaptable to high-throughput screening. We also designed a miniaturizable high-content imaging, immunofluorescence-based assay to assess the effect of DOT1L inhibitors on H3K79 methylation, reporting cellular IC50s after just four days of treatment. These three assays were validated against three known DOT1L inhibitors of different potencies, accurately differentiating between the compounds. Together, these orthogonal assays define an accessible platform capability to discover and optimize DOT1L inhibitors. Our platform rank-ordered a library of SAM derivatives that we synthesized, indicating that large substituents off the SAM base does not affect DOT1L binding. We also explored other features of the SAM core structure, identifying several chlorinated probes that had increased cellular potency (IC50 values ~10nM) relative to the initial compounds published, without losing specificity for DOT1L. The inhibitory effect on MLL-target gene expression correlated to the H3K79me2 decrease reported in high content assay, validating that our high-content assay accurately reports on downstream biology seen later in treatment. And as expected, the high-content potencies of our chlorinated DOT1L probes also correlated to increased anti-proliferative effect in MLL cells. Overall, we utilized chemistry, biology, and chemical biology tools to develop this profiling platform capability for more rapid discovery and optimization of small molecule DOT1L inhibitors. These assays can additionally be used to screen for non-SAM competitive inhibitors in high-throughput fashion. Furthermore, the DOT1L inhibitors and probes synthesized here (available as open-source tools) are useful in deeper mechanistic studies of the DOT1L complex and its role in MLL. Disclosures Armstrong: Epizyme: Consultancy.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3143
Author(s):  
Chaitra Rao ◽  
Dianna H. Huisman ◽  
Heidi M. Vieira ◽  
Danielle E. Frodyma ◽  
Beth K. Neilsen ◽  
...  

Genome-wide, loss-of-function screening can be used to identify novel vulnerabilities upon which specific tumor cells depend for survival. Functional Signature Ontology (FUSION) is a gene expression-based high-throughput screening (GE-HTS) method that allows researchers to identify functionally similar proteins, small molecules, and microRNA mimics, revealing novel therapeutic targets. FUSION uses cell-based high-throughput screening and computational analysis to match gene expression signatures produced by natural products to those produced by small interfering RNA (siRNA) and synthetic microRNA libraries to identify putative protein targets and mechanisms of action (MoA) for several previously undescribed natural products. We have used FUSION to screen for functional analogues to Kinase suppressor of Ras 1 (KSR1), a scaffold protein downstream of Ras in the Raf-MEK-ERK kinase cascade, and biologically validated several proteins with functional similarity to KSR1. FUSION incorporates bioinformatics analysis that may offer higher resolution of the endpoint readout than other screens which utilize Boolean outputs regarding a single pathway activation (i.e., synthetic lethal and cell proliferation). Challenges associated with FUSION and other high-content genome-wide screens include variation, batch effects, and controlling for potential off-target effects. In this review, we discuss the efficacy of FUSION to identify novel inhibitors and oncogene-induced changes that may be cancer cell-specific as well as several potential pitfalls within FUSION and best practices to avoid them.


2006 ◽  
Vol 11 (6) ◽  
pp. 678-687 ◽  
Author(s):  
Girma M. Woldemichael ◽  
James R. Vasselli ◽  
Roberta S. Gardella ◽  
Tawnya C. Mckee ◽  
W. Marston Linehan ◽  
...  

Reporter cell lines have been developed for the identification of inhibitors of gene expression enhanced by hypoxia-inducible factor 2, which has been implicated as a transcription factor involved in the tumorigenesis of clear cell renal carcinoma. Stably transformed reporter clones of the human renal clear cell carcinoma cell line 786-O were generated by transfection or retroviral infection. Luciferase reporter expression in the vectors used was driven by either the natural human vascular endothelial growth factor (VEGF) promoter-enhancer or by the VEGF and the human endothelial nitric oxide synthase enhancers modulating minimal human cytomegalovirus promoter. Utility of the generated reporter cell lines was validated by introducing the von Hippel-Lindau protein complex and testing for reporter inducibility by hypoxia. The dynamic range in reporter activity under hypoxic stress was found to be at least 30- to 40-fold, with a signal-to-noise ratio of 60:1. Properties of the cell lines such as tolerance to up to 3% DMSO, signal stability with multiple in vitro passages, and utility in both 96- and 384-well plate formats indicated their suitability for use in a high-throughput screen. In addition, the potential use of these reporter lines in the evaluation of high-throughput screening hits in vivo in various mice models has been demonstrated.


2016 ◽  
Author(s):  
Avanthi Raghavan ◽  
Xiao Wang ◽  
Peter Rogov ◽  
Li Wang ◽  
Xiaolan Zhang ◽  
...  

AbstractGenome-wide association studies have identified a number of novel genetic loci linked to serum cholesterol and triglyceride levels. The causal DNA variants at these loci and the mechanisms by which they influence phenotype and disease risk remain largely unexplored. Expression quantitative trait locus analyses of patient liver and fat biopsies indicate that many lipid-associated variants influence gene expression in a cis-regulatory manner. However, linkage disequilibrium among neighboring SNPs at a genome-wide association study-implicated locus makes it challenging to pinpoint the actual variant underlying an association signal. We used a methodological framework for causal variant discovery that involves high-throughput identification of putative disease-causal loci through a functional reporter-based screen, the massively parallel reporter assay, followed by validation of prioritized variants in genome-edited human pluripotent stem cell models generated with CRISPR-Cas9. We complemented the stem cell models with CRISPR interference experiments in vitro and in knock-in mice in vivo. We provide validation for two high-priority SNPs, rs2277862 and rs10889356, being causal for lipid-associated expression quantitative trait loci. We also highlight the challenges inherent in modeling common genetic variation with these experimental approaches.Author SummaryGenome-wide association studies have identified numerous loci linked to a variety of clinical phenotypes. It remains a challenge to identify and validate the causal DNA variants in these loci. We describe the use of a high-throughput technique called the massively parallel reporter assay to analyze thousands of candidate causal DNA variants for their potential effects on gene expression. We use a combination of genome editing in human pluripotent stem cells, “CRISPR interference” experiments in other cultured human cell lines, and genetically modified mice to analyze the two highest-priority candidate DNA variants to emerge from the massively parallel reporter assay, and we confirm the relevance of the variants to nearby gene expression. These findings highlight a methodological framework with which to identify and functionally validate causal DNA variants.


2019 ◽  
Vol 25 (1) ◽  
pp. 9-20 ◽  
Author(s):  
Olivia W. Lee ◽  
Shelley Austin ◽  
Madison Gamma ◽  
Dorian M. Cheff ◽  
Tobie D. Lee ◽  
...  

Cell-based phenotypic screening is a commonly used approach to discover biological pathways, novel drug targets, chemical probes, and high-quality hit-to-lead molecules. Many hits identified from high-throughput screening campaigns are ruled out through a series of follow-up potency, selectivity/specificity, and cytotoxicity assays. Prioritization of molecules with little or no cytotoxicity for downstream evaluation can influence the future direction of projects, so cytotoxicity profiling of screening libraries at an early stage is essential for increasing the likelihood of candidate success. In this study, we assessed the cell-based cytotoxicity of nearly 10,000 compounds in the National Institutes of Health, National Center for Advancing Translational Sciences annotated libraries and more than 100,000 compounds in a diversity library against four normal cell lines (HEK 293, NIH 3T3, CRL-7250, and HaCat) and one cancer cell line (KB 3-1, a HeLa subline). This large-scale library profiling was analyzed for overall screening outcomes, hit rates, pan-activity, and selectivity. For the annotated library, we also examined the primary targets and mechanistic pathways regularly associated with cell death. To our knowledge, this is the first study to use high-throughput screening to profile a large screening collection (>100,000 compounds) for cytotoxicity in both normal and cancer cell lines. The results generated here constitute a valuable resource for the scientific community and provide insight into the extent of cytotoxic compounds in screening libraries, allowing for the identification and avoidance of compounds with cytotoxicity during high-throughput screening campaigns.


Sign in / Sign up

Export Citation Format

Share Document