scholarly journals Changes in inflammatory gene expression in brain tissue adjacent and distant to a viable cyst in a rat model for neurocysticercosis

2021 ◽  
Vol 15 (4) ◽  
pp. e0009295
Author(s):  
Rogger P. Carmen-Orozco ◽  
Danitza G. Dávila-Villacorta ◽  
Ana D. Delgado-Kamiche ◽  
Rensson H. Celiz ◽  
Grace Trompeter ◽  
...  

Background The parasite Taenia solium causes neurocysticercosis (NCC) in humans and is a common cause of adult-onset epilepsy in the developing world. Hippocampal atrophy, which occurs far from the cyst, is an emerging new complication of NCC. Evaluation of molecular pathways in brain regions close to and distant from the cyst could offer insight into this pathology. Methods Rats were inoculated intracranially with T. solium oncospheres. After 4 months, RNA was extracted from brain tissue samples in rats with NCC and uninfected controls, and cDNA was generated. Expression of 38 genes related to different molecular pathways involved in the inflammatory response and healing was assessed by RT-PCR array. Results Inflammatory cytokines IFN-γ, TNF-α, and IL-1, together with TGF-β and ARG-1, were overexpressed in tissue close to the parasite compared to non-infected tissue. Genes for IL-1A, CSF-1, FN-1, COL-3A1, and MMP-2 were overexpressed in contralateral tissue compared to non-infected tissue. Conclusions The viable cysticerci in the rat model for NCC is characterized by increased expression of genes associated with a proinflammatory response and fibrosis-related proteins, which may mediate the chronic state of infection. These pathways appear to influence regions far from the cyst, which may explain the emerging association between NCC and hippocampal atrophy.

2015 ◽  
Vol 122 (7) ◽  
pp. 993-1005 ◽  
Author(s):  
Mariana Molina ◽  
Simone Steinbach ◽  
Young Mok Park ◽  
Su Yeong Yun ◽  
Ana Tereza Di Lorenzo Alho ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
pp. 241-250
Author(s):  
Zhenyu Li ◽  
Guangqian Ding ◽  
Yudi Wang ◽  
Zelong Zheng ◽  
Jianping Lv

AbstractTranscription factor EB (TFEB)-based gene therapy is a promising therapeutic strategy in treating neurodegenerative diseases by promoting autophagy/lysosome-mediated degradation and clearance of misfolded proteins that contribute to the pathogenesis of these diseases. However, recent findings have shown that TFEB has proinflammatory properties, raising the safety concerns about its clinical application. To investigate whether TFEB induces significant inflammatory responses in the brain, male C57BL/6 mice were injected with phosphate-buffered saline (PBS), adeno-associated virus serotype 8 (AAV8) vectors overexpressing mouse TFEB (pAAV8-CMV-mTFEB), or AAV8 vectors expressing green fluorescent proteins (GFPs) in the barrel cortex. The brain tissue samples were collected at 2 months after injection. Western blotting and immunofluorescence staining showed that mTFEB protein levels were significantly increased in the brain tissue samples of mice injected with mTFEB-overexpressing vectors compared with those injected with PBS or GFP-overexpressing vectors. pAAV8-CMV-mTFEB injection resulted in significant elevations in the mRNA and protein levels of lysosomal biogenesis indicators in the brain tissue samples. No significant changes were observed in the expressions of GFAP, Iba1, and proinflammation mediators in the pAAV8-CMV-mTFEB-injected brain compared with those in the control groups. Collectively, our results suggest that AAV8 successfully mediates mTFEB overexpression in the mouse brain without inducing apparent local inflammation, supporting the safety of TFEB-based gene therapy in treating neurodegenerative diseases.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 489
Author(s):  
Sylwia Prochowska ◽  
Agnieszka Partyka ◽  
Wojciech Niżański

Apoptosis is a crucial process in spermatogenesis, responsible for the elimination of abnormal sperm cells and testicular regression out of breeding season. The aim of this study was to assess if the expression of apoptosis-related genes in testicular tissue of domestic cats differed: (1) between normozoospermic and teratozoospermic donors, and (2) between reproductive and non-reproductive season. The expression of genes: BCL2L1, BCL2, BAX, BAD, FAS, FASLG, and caspases (CASP3, CASP8, CASP9, and CASP10) was analyzed by qRT-PCR in testicular tissue samples. During non-reproductive season significantly higher expression of two anti-apoptotic genes (BCL2L1 and BCL2) was observed. Additionally, there was a significant higher expression of CASP10 in teratozoospermic cats during non-reproductive than during reproductive season. No differences were noted between normozoospermic and teratozoospermic groups. Upregulation of some genes during the non-reproductive season indicates engagement of apoptotic mechanisms in the seasonal changes of semen quality in cats, however further studies on protein levels and analysis of changes on distinct testicular germinal layers are required. At the same time, teratozoospermia in the general population of cats seems to be not connected with dysregulation of apoptosis in the testes.


2021 ◽  
Vol 11 (7) ◽  
pp. 889
Author(s):  
Anton D. Filev ◽  
Denis N. Silachev ◽  
Ivan A. Ryzhkov ◽  
Konstantin N. Lapin ◽  
Anastasiya S. Babkina ◽  
...  

The overactivation of inflammatory pathways and/or a deficiency of neuroplasticity may result in the delayed recovery of neural function in traumatic brain injury (TBI). A promising approach to protecting the brain tissue in TBI is xenon (Xe) treatment. However, xenon’s mechanisms of action remain poorly clarified. In this study, the early-onset expression of 91 target genes was investigated in the damaged and in the contralateral brain areas (sensorimotor cortex region) 6 and 24 h after injury in a TBI rat model. The expression of genes involved in inflammation, oxidation, antioxidation, neurogenesis and neuroplasticity, apoptosis, DNA repair, autophagy, and mitophagy was assessed. The animals inhaled a gas mixture containing xenon and oxygen (ϕXe = 70%; ϕO2 25–30% 60 min) 15–30 min after TBI. The data showed that, in the contralateral area, xenon treatment induced the expression of stress genes (Irf1, Hmox1, S100A8, and S100A9). In the damaged area, a trend towards lower expression of the inflammatory gene Irf1 was observed. Thus, our results suggest that xenon exerts a mild stressor effect in healthy brain tissue and has a tendency to decrease the inflammation following damage, which might contribute to reducing the damage and activating the early compensatory processes in the brain post-TBI.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 460.1-460
Author(s):  
L. Cheng ◽  
S. X. Zhang ◽  
S. Song ◽  
C. Zheng ◽  
X. Sun ◽  
...  

Background:Rheumatoid arthritis (RA) is a chronic, inflammatory synovitis based systemic disease of unknown etiology1. The genes and pathways in the inflamed synovium of RA patients are poorly understood.Objectives:This study aims to identify differentially expressed genes (DEGs) associated with the progression of synovitis in RA using bioinformatics analysis and explore its pathogenesis2.Methods:RA expression profile microarray data GSE89408 were acquired from the public gene chip database (GEO), including 152 synovial tissue samples from RA and 28 healthy synovial tissue samples. The DEGs of RA synovial tissues were screened by adopting the R software. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Protein-protein interaction (PPI) networks were assembled with Cytoscape software.Results:A total of 654 DEGs (268 up-regulated genes and 386 down-regulated genes) were obtained by the differential analysis. The GO enrichment results showed that the up-regulated genes were significantly enriched in the biological processes of myeloid leukocyte activation, cellular response to interferon-gamma and immune response-regulating signaling pathway, and the down-regulated genes were significantly enriched in the biological processes of extracellular matrix, retinoid metabolic process and regulation of lipid metabolic process. The KEGG annotation showed the up-regulated genes mainly participated in the staphylococcus aureus infection, chemokine signaling pathway, lysosome signaling pathway and the down-regulated genes mainly participated in the PPAR signaling pathway, AMPK signaling pathway, ECM-receptor interaction and so on. The 9 hub genes (PTPRC, TLR2, tyrobp, CTSS, CCL2, CCR5, B2M, fcgr1a and PPBP) were obtained based on the String database model by using the Cytoscape software and cytoHubba plugin3.Conclusion:The findings identified the molecular mechanisms and the key hub genes of pathogenesis and progression of RA.References:[1]Xiong Y, Mi BB, Liu MF, et al. Bioinformatics Analysis and Identification of Genes and Molecular Pathways Involved in Synovial Inflammation in Rheumatoid Arthritis. Med Sci Monit 2019;25:2246-56. doi: 10.12659/MSM.915451 [published Online First: 2019/03/28][2]Mun S, Lee J, Park A, et al. Proteomics Approach for the Discovery of Rheumatoid Arthritis Biomarkers Using Mass Spectrometry. Int J Mol Sci 2019;20(18) doi: 10.3390/ijms20184368 [published Online First: 2019/09/08][3]Zhu N, Hou J, Wu Y, et al. Identification of key genes in rheumatoid arthritis and osteoarthritis based on bioinformatics analysis. Medicine (Baltimore) 2018;97(22):e10997. doi: 10.1097/MD.0000000000010997 [published Online First: 2018/06/01]Acknowledgements:This project was supported by National Science Foundation of China (82001740), Open Fund from the Key Laboratory of Cellular Physiology (Shanxi Medical University) (KLCP2019) and Innovation Plan for Postgraduate Education in Shanxi Province (2020BY078).Disclosure of Interests:None declared


2011 ◽  
Vol 204 (10) ◽  
pp. 1563-1572 ◽  
Author(s):  
Chien-Tsai Chiu ◽  
Li-Li Wen ◽  
Hsin-Ping Pao ◽  
Jia-Yi Wang
Keyword(s):  

2015 ◽  
Vol 40 (2) ◽  
pp. 133-139 ◽  
Author(s):  
Amal A. Bajrai ◽  
Essam Ezzeldin ◽  
Khalid A. Al-Rashood ◽  
Mohammad Raish ◽  
Muzaffar Iqbal

2021 ◽  
Vol 21 (2) ◽  
pp. 63-73
Author(s):  
Valeria A. Razenkova ◽  
Dmitrii E. Korzhevskii

BACKGROUND: Taking into account the importance of GABAergic brain system research and also the opportunity to achieve specific and accurate results in laboratory studies using immunohistochemical approaches, it seems important to have a reliable method of visualization GABA-synthesizing cells, their projections and synapses, for the morphofunctional analysis of GABAergic system both in normal conditions and in the experimental pathology. AIM: The aim of the study was to visualize analyze GABAergic neurons and synapses within rats brain using three different antibody types against glutamate decarboxylase and to identify the optimal conditions for reaction performing. MATERIALS AND METHODS: The study was performed on paraffin brain tissue sections of 5 adult Wistar rats. Immunohistochemical reactions using three antibody types against glutamate decarboxylase isoform 67 (GAD67) and glutamate decarboxylase isoform 65 (GAD65) were performed. Additional controls on C57/Bl6 mice and Chinchilla rabbits brain samples were also carried out. RESULTS: Antibodies used in the research made it possible to achieve high quality of GABAergic structures visualizing without increasing background staining. At the same time different antibody types are distinct in their efficacy to perform immunohistochemistry reaction on laboratory animal brain tissue samples. By performing additional controls, we discovered that there is necessary to adsorb secondary reagents immunoglobulins in order to eliminate nonspecific staining. It was found that GAD67 and GAD65 distribution in rat forebrain structures is different. It was stated that GAD67 immunohistochemistry most completely reveals GABAergic brain structures compared to GAD65 immunhistochemistry. The possibility of determining morphological features of GABAergic neurons and synaptic terminals, as well as performing quantitative analysis, was demonstrated. CONCLUSIONS: The approach proposed makes it possible to specifically visualize GABAergic structures of the central nervous system of different laboratory animals. This could be useful both in fundamental studies and in pathology research.


2018 ◽  
Vol 80 ◽  
pp. 66-84 ◽  
Author(s):  
Harmanvir Ghuman ◽  
Carrinton Mauney ◽  
Julia Donnelly ◽  
Andre R. Massensini ◽  
Stephen F. Badylak ◽  
...  

2018 ◽  
Vol 28 (1) ◽  
pp. 56-62
Author(s):  
Cahit Kural ◽  
Arzu Kaya Kocdogan ◽  
Gulcin Güler Şimşek ◽  
Serpil Oğuztüzün ◽  
Pınar Kaygın ◽  
...  

Objective: Intracranial tumors are one of the most frightening and difficult-to-treat tumor types. In addition to surgery, protocols such as chemotherapy and radiotherapy also take place in the treatment. Glutathione S-transferase (GST) and cytochrome P450 (CYP) enzymes are prominent drug-metabolizing enzymes in the human body. The aim of this study is to show the expression of GSTP1, GSTM1, CYP1A1, and CYP1B1 in different types of brain tumors and compare our results with those in the literature. Subjects and Methods: The expression of GSTP1, GSTM1, CYP1A1, and CYP1B1 was analyzed using immunostaining in 55 patients with intracranial tumors in 2016–2017. For GST and CYP expression in normal brain tissue, samples of a portion of surrounding normal brain tissue as well as a matched far neighbor of tumor tissue were used. The demographic features of the patients were documented and the expression results compared. Results: The mean age of the patients was 46.72 years; 29 patients were female and 26 were male. Fifty-seven specimens were obtained from 55 patients. Among them, meningioma was diagnosed in 12, metastases in 12, glioblastoma in 9, and pituitary adenoma in 5. The highest GSTP1, GSTM1, and CYP­1A1 expressions were observed in pituitary adenomas. The lowest GSTP1 expression was detected in glioblastomas and the lowest CYP1B1 expression in pituitary adenomas. Conclusion: GSTP1 and CYP expression is increased in intracranial tumors. These results should be confirmed with a larger series and different enzyme subtypes.


Sign in / Sign up

Export Citation Format

Share Document