scholarly journals Identification of enzymes that have helminth-specific active sites and are required for Rhodoquinone-dependent metabolism as targets for new anthelmintics

2021 ◽  
Vol 15 (11) ◽  
pp. e0009991
Author(s):  
Margot J. Lautens ◽  
June H. Tan ◽  
Xènia Serrat ◽  
Samantha Del Borrello ◽  
Michael R. Schertzberg ◽  
...  

Soil transmitted helminths (STHs) are major human pathogens that infect over a billion people. Resistance to current anthelmintics is rising and new drugs are needed. Here we combine multiple approaches to find druggable targets in the anaerobic metabolic pathways STHs need to survive in their mammalian host. These require rhodoquinone (RQ), an electron carrier used by STHs and not their hosts. We identified 25 genes predicted to act in RQ-dependent metabolism including sensing hypoxia and RQ synthesis and found 9 are required. Since all 9 have mammalian orthologues, we used comparative genomics and structural modeling to identify those with active sites that differ between host and parasite. Together, we found 4 genes that are required for RQ-dependent metabolism and have different active sites. Finding these high confidence targets can open up in silico screens to identify species selective inhibitors of these enzymes as new anthelmintics.

2021 ◽  
Author(s):  
Margot J. Lautens ◽  
June H. Tan ◽  
Xènia Serrat ◽  
Samantha Del Borrello ◽  
Michael R. Schertzberg ◽  
...  

ABSTRACTSoil transmitted helminths (STHs) are major human pathogens that infect over a billion people. Resistance to current anthelmintics is rising and new drugs are needed. Here we combine multiple approaches to find druggable targets that are essential for RQ-dependent metabolism, an unusual form of anaerobic metabolism which STHs need to survive in their host. We identified 25 genes predicted to act in RQ-dependent metabolism from sensing hypoxia to RQ synthesis — this includes components of the kynurenine pathway we previously showed to be essential for RQ synthesis (Del Borrello et al., 2019). We found 9 genes to be required — since all have host orthologues, we used comparative genomics and structural modeling to identify those with helminth-specific active sites and found 4 such targets. These 4 high confidence targets open up the possibility of in silico screens to identify STH-specific inhibitors of these enzymes as new anthelmintics.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 460
Author(s):  
Amr El-Demerdash ◽  
Ahmed M. Metwaly ◽  
Afnan Hassan ◽  
Tarek Mohamed Abd El-Aziz ◽  
Eslam B. Elkaeed ◽  
...  

The huge global expansion of the COVID-19 pandemic caused by the novel SARS-corona virus-2 is an extraordinary public health emergency. The unavailability of specific treatment against SARS-CoV-2 infection necessitates the focus of all scientists in this direction. The reported antiviral activities of guanidine alkaloids encouraged us to run a comprehensive in silico binding affinity of fifteen guanidine alkaloids against five different proteins of SARS-CoV-2, which we investigated. The investigated proteins are COVID-19 main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and a non-structural protein (nsp10) (PDB ID: 6W4H). The binding energies for all tested compounds indicated promising binding affinities. A noticeable superiority for the pentacyclic alkaloids particularly, crambescidin 786 (5) and crambescidin 826 (13) has been observed. Compound 5 exhibited very good binding affinities against Mpro (ΔG = −8.05 kcal/mol), nucleocapsid phosphoprotein (ΔG = −6.49 kcal/mol), and nsp10 (ΔG = −9.06 kcal/mol). Compound 13 showed promising binding affinities against Mpro (ΔG = −7.99 kcal/mol), spike glycoproteins (ΔG = −6.95 kcal/mol), and nucleocapsid phosphoprotein (ΔG = −8.01 kcal/mol). Such promising activities might be attributed to the long ω-fatty acid chain, which may play a vital role in binding within the active sites. The correlation of c Log P with free binding energies has been calculated. Furthermore, the SAR of the active compounds has been clarified. The Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) studies were carried out in silico for the 15 compounds; most examined compounds showed optimal to good range levels of ADMET aqueous solubility, intestinal absorption and being unable to pass blood brain barrier (BBB), non-inhibitors of CYP2D6, non-hepatotoxic, and bind plasma protein with a percentage less than 90%. The toxicity of the tested compounds was screened in silico against five models (FDA rodent carcinogenicity, carcinogenic potency TD50, rat maximum tolerated dose, rat oral LD50, and rat chronic lowest observed adverse effect level (LOAEL)). All compounds showed expected low toxicity against the tested models. Molecular dynamic (MD) simulations were also carried out to confirm the stable binding interactions of the most promising compounds, 5 and 13, with their targets. In conclusion, the examined 15 alkaloids specially 5 and 13 showed promising docking, ADMET, toxicity and MD results which open the door for further investigations for them against SARS-CoV-2.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 416
Author(s):  
Sami I. Alzarea ◽  
Abeer H. Elmaidomy ◽  
Hani Saber ◽  
Arafa Musa ◽  
Mohammad M. Al-Sanea ◽  
...  

LC-MS-assisted metabolomic profiling of the Red Sea-derived brown algae Sargassum cinereum “Sargassaceae” dereplicated eleven compounds 1–11. Further phytochemical investigation afforded two new aryl cresol 12–13, along with eight known compounds 14–21. Both new metabolites, along with 19, showed moderate in vitro antiproliferative activity against HepG2, MCF-7, and Caco-2. Pharmacophore-based virtual screening suggested both 5-LOX and 15-LOX as the most probable target linked to their observed antiproliferative activity. The in vitro enzyme assays revealed 12 and 13 were able to inhibit 5-LOX more preferentially than 15-LOX, while 19 showed a convergent inhibitory activity toward both enzymes. Further in-depth in silico investigation revealed the molecular interactions inside both enzymes’ active sites and explained the varying inhibitory activity for 12 and 13 toward 5-LOX and 15-LOX.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 155
Author(s):  
Ekaitz Errasti-Murugarren ◽  
Paola Bartoccioni ◽  
Manuel Palacín

Accounting for nearly two-thirds of known druggable targets, membrane proteins are highly relevant for cell physiology and pharmacology. In this regard, the structural determination of pharmacologically relevant targets would facilitate the intelligent design of new drugs. The structural biology of membrane proteins is a field experiencing significant growth as a result of the development of new strategies for structure determination. However, membrane protein preparation for structural studies continues to be a limiting step in many cases due to the inherent instability of these molecules in non-native membrane environments. This review describes the approaches that have been developed to improve membrane protein stability. Membrane protein mutagenesis, detergent selection, lipid membrane mimics, antibodies, and ligands are described in this review as approaches to facilitate the production of purified and stable membrane proteins of interest for structural and functional studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arpit Shukla ◽  
Gaurav Shukla ◽  
Paritosh Parmar ◽  
Baldev Patel ◽  
Dweipayan Goswami ◽  
...  

AbstractThere persists a constant threat from multidrug resistance being acquired by all human pathogens that challenges the well-being of humans. This phenomenon is predominantly led by Pseudomonas aeruginosa which is already resistant to the current generations of antibiotic by altering its metabolic pathways to survive. Specifically for this microbe the phenomenon of quorum sensing (QS) plays a crucial role in acquiring virulence and pathogenicity. QS is simply the cross talk between the bacterial community driven by signals that bind to receptors, enabling the entire bacterial microcosm to function as a single unit which has led to control P. aeruginosa cumbersome even in presence of antibiotics. Inhibition of QS can, therefore, be of a significant importance to curb such virulent and pathogenic strains of P. aeruginosa. Natural compounds are well known for their antimicrobial properties, of which, information on their mode of action is scarce. There can be many antimicrobial phytochemicals that act by hindering QS-pathways. The rationale of the current study is to identify such natural compounds that can inhibit QS in P. aeruginosa driven by LasR, PhzR, and RhlR dependent pathways. To achieve this rationale, in silico studies were first performed to identify such natural compounds which were then validated by in vitro experiments. Gingerol and Curcumin were identified as QS-antagonists (QSA) which could further suppress the production of biofilm, EPS, pyocyanin, and rhamnolipid along with improving the susceptibility to antibiotics.


2020 ◽  
Vol 10 (2) ◽  
pp. 2063-2069

One of the largest families of membrane proteins, the G protein-coupled receptors (GPCRs) has been a very important target of drug discovery as they are involved in having a regulatory role in a variety of signaling pathways at the cellular level in response to external stimuli. Modern in-silico and crystallographic approaches have further made it easier to peep into their structures. In this study, β2 adrenergic receptor (β2AR) has been targeted, and a new ligand molecule using the de-novo approach has been proposed. Using 1-Amino-3-(2,3-dihydro-1H-indol-4-yloxy)-propan-2-ol, the best fitting binding fragments were established with a significant dissociation constant value of 5-7 nanomolar. The flexibility of specific active sites was also investigated, and it was observed that residues 114 (V), 117 (V), 203 (S), 286 (W), and 289 (F) played a crucial role in accommodating ligand for the best binding. Upon examination of the bioavailability parameters, the ligand var9 exhibited significant inhibitory characteristics having lower toxicity values and high drug likeliness properties. Findings certainly hold significance in terms of targeting GPCRs in getting insight into structure-based drug designing and drug discovery.


Author(s):  
Oladoja AWofisayo

Objectives: The need for new antimalarials drugs and drug targets is pertinent due to the emergence of drug resistant strains of the parasites. Improper target selection has resulted in therapeutic failure. The genomic/post genomic era has made possible the deciphering of the 3D crystal structures of proteins and DNA which are drug targets and are deposited in the protein data bank. Methods: Novel antimalarial targets obtained from evolutionary conserved short sequence motifs are utilised and are essential in transcription processes in the parasite. The motifs TGCATGCA, GTGCAC and GTGCGTGC were curated from experimental work, validated and analysed via phylogenomics genomics and comparative genomics. PlasmoDB blastn was applied to determine their similarity in Plasmodium vivax, knowlesi, Ovale and yoeli. The complete genome of Plasmodium falciparum vivax, knowlesi, Ovale and yoeli was downloaded from the plasmoDB and their positions determined. Results: The targets are essential, conserved in rodent and mammalian species via phylogenomics with percentage identity and similarity greater than 80%, have no similar genes in the same genome and also found to be selective in the parasites vis-à-vis the Homo sapiens via comparative genomics with 0% identity and similarity in the human genome. Conclusion: The targets reveal at the molecular and biochemical level, the vulnerable regions in the parasite while safe in human hence their choices in subsequent rationale drug discovery and design protocols. Peer Review History: Received: 18 July 2020; Revised: 1 October; Accepted: 12 October, Available online: 15 November 2020 UJPR follows the most transparent and toughest ‘Advanced OPEN peer review’ system. The identity of the authors and, reviewers will be known to each other. This transparent process will help to eradicate any possible malicious/purposeful interference by any person (publishing staff, reviewer, editor, author, etc) during peer review. As a result of this unique system, all reviewers will get their due recognition and respect, once their names are published in the papers. We expect that, by publishing peer review reports with published papers, will be helpful to many authors for drafting their article according to the specifications. Auhors will remove any error of their article and they will improve their article(s) according to the previous reports displayed with published article(s). The main purpose of it is ‘to improve the quality of a candidate manuscript’. Our reviewers check the ‘strength and weakness of a manuscript honestly’. There will increase in the perfection, and transparency. Received file Average Peer review marks at initial stage: 5.5/10 Average Peer review marks at publication stage: 7.0/10 Reviewer(s) detail: Dr. Tamer ELHABIBI, ERU University, Egypt, [email protected] Dr. Soroush Sardari, Biotech Pasteur Institute of Iran, Tehran, Iran, [email protected] Comments of reviewer(s): Similar Articles: IN SILICO LIGAND-BASED 2D PHARMACOPHORE GENERATION FOR H+/K+ ATPASE INHIBITORS


2019 ◽  
Author(s):  
Taweetham Limpanuparb ◽  
Rattha Noorat ◽  
Yuthana Tantirungrotechai

Abstract Objective: Mitragynine is the main active compound of Mitragyna speciose (Kratom in Thai). The understanding of mitragynine derivative metabolism in human body is required to develop effective detection techniques in case of drug abuse or establish an appropriate dosage in case of medicinal uses. This in silico study is based upon in vivo results in rat and human by Philipp et al. (J. Mass Spectrom., 2009, 44, 1249.) Results: The gas-phase structures of mitragynine, 7-hydroxymitragynine and their metabolites were obtained by quantum chemical method at B3LYP/6-311++G(d,p) level. Results in terms of standard Gibbs energies of reaction for all metabolic pathways are reported with solvation energy from SMD model. We found that 7-hydroxy substitution leads to changes in reactivity in comparison to mitragynine: position 17 is more reactive towards demethylation and conjugation to a glucuronide and position 9 is less reactive towards conjugation to a glucuronide. Despite the changes, position 9 is the most reactive for demethylation and position 17 is the most reactive for conjugation to a glucuronide for both mitragynine and 7-hydroxymitragynine. Our results suggest that 7-hydroxy substitution could lead to different metabolic pathways and raise an important question for further experimental studies of this more potent derivative.


2021 ◽  
Author(s):  
Janine Naß ◽  
Thomas Efferth

Abstract Introduction Depression is responsible for 800 000 deaths worldwide, a number that will rise significantly due to the COVID-19 pandemic. Affordable novel drugs with less severe side effects are urgently required. We investigated the effect of withanone (WN) from Withania somnifera on the serotonin system of wild-type and knockout Caenorhabditis elegans strains using in silico, in vitro, and in vivo methods. Methods WN or fluoxetine (as positive control drug) was administered to wild-type (N2) and knockout C. elegans strains (AQ866, DA1814, DA2100, DA2109, and MT9772) to determine their effect on oxidative stress (Trolox, H2DCFDA, and juglone assays) on osmotic stress and heat stress and lifespan. Quantitative real-time RT-PCR was applied to investigate the effect of WN or fluoxetine on the expression of serotonin receptors (ser-1, ser-4, ser-7) and serotonin transporter (mod-5). The binding affinity of WN to serotonin receptors and transporter was analyzed in silico using AutoDock 4.2.6. Results WN scavenged ROS in wild-type and knockout C. elegans and prolonged their lifespan. WN upregulated the expression of serotonin receptor and transporter genes. In silico analyses revealed high binding affinities of WN to Ser-1, Ser-4, Ser-7, and Mod-5. Limitations Further studies are needed to prove whether the results from C. elegans are transferrable to mammals and human beings. Conclusion WN ameliorated depressive-associated stress symptoms by activating the serotonin system. WN may serve as potential candidate in developing new drugs to treat depression.


Sign in / Sign up

Export Citation Format

Share Document