scholarly journals The role of cinnamon as a modulator of the expression of genes related to antioxidant activity and lipid metabolism of laying quails

PLoS ONE ◽  
2017 ◽  
Vol 12 (12) ◽  
pp. e0189619 ◽  
Author(s):  
Marisa Silva Bastos ◽  
Ana Paula Del Vesco ◽  
Thaís Pacheco Santana ◽  
Thailine Santana Santos ◽  
Gregório Murilo de Oliveira Junior ◽  
...  
2021 ◽  
Vol 22 (5) ◽  
pp. 2529
Author(s):  
Amin Javadifar ◽  
Sahar Rastgoo ◽  
Maciej Banach ◽  
Tannaz Jamialahmadi ◽  
Thomas P. Johnston ◽  
...  

Atherosclerosis is a major cause of human cardiovascular disease, which is the leading cause of mortality around the world. Various physiological and pathological processes are involved, including chronic inflammation, dysregulation of lipid metabolism, development of an environment characterized by oxidative stress and improper immune responses. Accordingly, the expansion of novel targets for the treatment of atherosclerosis is necessary. In this study, we focus on the role of foam cells in the development of atherosclerosis. The specific therapeutic goals associated with each stage in the formation of foam cells and the development of atherosclerosis will be considered. Processing and metabolism of cholesterol in the macrophage is one of the main steps in foam cell formation. Cholesterol processing involves lipid uptake, cholesterol esterification and cholesterol efflux, which ultimately leads to cholesterol equilibrium in the macrophage. Recently, many preclinical studies have appeared concerning the role of non-encoding RNAs in the formation of atherosclerotic lesions. Non-encoding RNAs, especially microRNAs, are considered regulators of lipid metabolism by affecting the expression of genes involved in the uptake (e.g., CD36 and LOX1) esterification (ACAT1) and efflux (ABCA1, ABCG1) of cholesterol. They are also able to regulate inflammatory pathways, produce cytokines and mediate foam cell apoptosis. We have reviewed important preclinical evidence of their therapeutic targeting in atherosclerosis, with a special focus on foam cell formation.


Reproduction ◽  
2016 ◽  
Vol 152 (4) ◽  
pp. R115-R126 ◽  
Author(s):  
Eduardo S Ribeiro ◽  
José E P Santos ◽  
William W Thatcher

Elongation of the preimplantation conceptus is a prerequisite for successful pregnancy in ruminants and depends on histotroph secretion by the endometrium. Lipids are an essential component of the histotroph, and recent studies indicate that lipids have important roles in the elongation phase of conceptus development. The onset of elongation is marked by dynamic changes in the transcriptome of trophectoderm cells, which are associated with lipid metabolism. During elongation, the trophectoderm increases transcript expression of genes related to uptake, metabolism andde novobiosynthesis of fatty acids and prostaglandins. Expression of the genePPARGincreases substantially, and activation of the transcription factor PPARG by binding of lipid ligands appears to be crucial for the coordination of cell biology during elongation. Lipids accumulated in the epithelial cells of the endometrium during diestrus are likely the most important source of fatty acids for utilization by the conceptus and become available in the uterine lumen through exporting of exosomes, microvesicles, carrier proteins and lipoproteins. Targeting of uterine lipid metabolism and PPARG activity during preimplantation conceptus development through nutraceutical diets may be a good strategy to improve pregnancy survival and reproductive efficiency in ruminants.


2020 ◽  
Vol 19 (3) ◽  
pp. 248-254
Author(s):  
Hao Liu ◽  
Yixin Zhang ◽  
Kaijun Long ◽  
Fandi Wang ◽  
Xingxing Zeng ◽  
...  

In an earlier study, we had demonstrated ameliorative effects of Dendrobium nobile Lindl. on dyslipidemia and fatty liver in mouse fed a high fat diet. In the present study, we have examined the effect of D. nobile on the lipid metabolism in normal healthy rats after intragastric treatment for four times a day for five days. The treatment followed a metabolomics analysis of the plasma samples for metabolites by ultra-performance liquid chromatography-mass spectroscopy and the expression levels of genes for lipid metabolism. The metabolite profiles were substantially altered by D. nobile. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis, metabolic pathways were ranked first in terms of the number of referenced metabolites. There were 112 metabolites that were changed significantly in the pathways. The results revealed that D. nobile increased the content of epoxy-octadecenoic acids in plasma more than 19-folds. Moreover, the expression of genes Cyp1a2, Cyp2e1, Cyp2j2, Cyp3a1, Pparγ, Lpl, Acsl1, and Hmgcs2 were all induced in D. nobile treatment group (P < 0.05). Our results supported that D. nobile has a significant role in regulating lipid metabolism in healthy rats. Therefore, it is tempting to speculate that D. nobile would be beneficial in protecting human against the disorders of lipid metabolism.


1988 ◽  
Vol 117 (4_Suppl) ◽  
pp. S130-S131
Author(s):  
M. J. MÜLLER ◽  
A. G. BURGER ◽  
E. JEQUIER ◽  
K.J. ACHESON

2010 ◽  
Vol 151 (34) ◽  
pp. 1376-1383 ◽  
Author(s):  
Mariann Harangi ◽  
István Balogh ◽  
János Harangi ◽  
György Paragh

A Niemann–Pick C1-like-1 egy szterolfelismerő domént tartalmazó membránfehérje, amelyet nagy számban expresszálnak csúcsi felszínükön a bélhámsejtek. Az utóbbi évek vizsgálatai azt igazolták, hogy ez a fehérje szükséges a szabad koleszterin bejutásához a bélhámsejtekbe a bél lumenéből. Biokémiai vizsgálatok azt igazolták, hogy a Niemann–Pick C1-like-1-hez kötődik az ezetimib, amely egy hatékony koleszterinfelszívódást gátló szer. A bélből történő koleszterinfelszívódás ütemében és az ezetimibkezelés hatékonyságában tapasztalt egyéni eltérések hátterében felmerült néhány Niemann–Pick C1-like-1 génvariáció oki szerepe.


2020 ◽  
Vol 28 ◽  
Author(s):  
Seyed Mohammad Nabavi ◽  
Kasi Pandima Devi ◽  
Sethuraman Sathya ◽  
Ana Sanches-Silva ◽  
Listos Joanna ◽  
...  

: Obesity is a major health concern for a growing fraction of the population, with the prevalence of obesity and its related metabolic disorders not being fully understood. Over the last decade, many attempts have been undertaken to understand the mechanisms at the basis of this condition, in which the accumulation of fat occurring in adipose tissue, leads to the pathogenesis of obesity related disorders. Among the most recent studies, those on Peroxisome Proliferator Activated Receptors (PPARs) revealed that these nuclear receptor proteins acting as transcription factors, among others, regulate the expression of genes involved in energy, lipid, and glucose metabolisms, and chronic inflammation. The three different isotypes of PPARs, with different tissue expression and ligand binding specificity, exert similar or overlapping functions directly or indirectly linked to obesity. In this study, we reviewed the available scientific reports concerning the PPARs structure and functions, especially in obesity, considering both natural and synthetic ligands and their role in the therapy of obesity and obesity-associated disorders. In the whole, the collected data show that there are both natural and synthetic compounds that show beneficial promising activity as PPAR agonists in chronic diseases related to obesity.


2018 ◽  
Vol 18 (7) ◽  
pp. 985-992 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Ertan Kucuksayan ◽  
Rana Cagla Akduman ◽  
Tomris Ozben

This systematic review aims to elucidate the role of melatonin (N-acetyl-5-metoxy-tryptamine) (MLT) in the prevention and treatment of cancer. MLT is a pineal gland secretory product, an evolutionarily highly conserved molecule; it is also an antioxidant and an impressive protector of mitochondrial bioenergetic activity. MLT is characterized by an ample range of activities, modulating the physiology and molecular biology of the cell. Its physiological functions relate principally to the interaction of G Protein-Coupled MT1 and MT2 trans-membrane receptors (GPCRs), a family of guanidine triphosphate binding proteins. MLT has been demonstrated to suppress the growth of various tumours both, in vivo and in vitro. In this review, we analyze in depth, the antioxidant activity of melatonin, aiming to illustrate the cancer treatment potential of the molecule, by limiting or reversing the changes occurring during cancer development and growth.


Sign in / Sign up

Export Citation Format

Share Document