scholarly journals Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus

PLoS ONE ◽  
2019 ◽  
Vol 14 (7) ◽  
pp. e0220374 ◽  
Author(s):  
Yu Li ◽  
Xue Wang ◽  
Hao Zhang ◽  
Sheliang Wang ◽  
Xiangsheng Ye ◽  
...  
2020 ◽  
Vol 21 (24) ◽  
pp. 9487
Author(s):  
Jie Zhou ◽  
Hong-Jun Zhou ◽  
Ping Chen ◽  
Lan-Lan Zhang ◽  
Jia-Tian Zhu ◽  
...  

The KT/HAK/KUP (HAK) family is the largest potassium (K+) transporter family in plants, which plays key roles in K+ uptake and homeostasis, stress resistance, and root and embryo development. However, the HAK family has not yet been characterized in Brassica napus. In this study, 40 putative B. napus HAK genes (BnaHAKs) are identified and divided into four groups (Groups I–III and V) on the basis of phylogenetic analysis. Gene structure analysis revealed 10 conserved intron insertion sites across different groups. Collinearity analysis demonstrated that both allopolyploidization and small-scale duplication events contributed to the large expansion of BnaHAKs. Transcription factor (TF)-binding network construction, cis-element analysis, and microRNA prediction revealed that the expression of BnaHAKs is regulated by multiple factors. Analysis of RNA-sequencing data further revealed extensive expression profiles of the BnaHAKs in groups II, III, and V, with limited expression in group I. Compared with group I, most of the BnaHAKs in groups II, III, and V were more upregulated by hormone induction based on RNA-sequencing data. Reverse transcription-quantitative polymerase reaction analysis revealed that the expression of eight BnaHAKs of groups I and V was markedly upregulated under K+-deficiency treatment. Collectively, our results provide valuable information and key candidate genes for further functional studies of BnaHAKs.


2020 ◽  
Author(s):  
Yan Lv ◽  
Dan Luo ◽  
Ziqi Jia ◽  
Yong Cheng ◽  
Xiling Zou

Abstract Background: The β amylase (BAM) gene family, known for their property of catalytic ability to hydrolyze starch to maltose units, has been recognized to play critical roles in metabolism and gene regulation. To date, BAM genes have not been characterized in oil crops.Results: In this study, the genome wide survey revealed the identification of 30 BnaBAM genes in Brassica napus (B. napus), 11 BraBAM genes in Brassica rapa (B. rapa), 20 BoBAM genes in Brassica oleracea (B. oleracea), which were divided into 4 subfamilies according to the sequence similarity and phylogenetic relationships. All the BAM genes identified in the allotetraploid genome of B. napus, as well as two parental related species (B. rapa and B. oleracea), were analyzed for the gene structures, chromosomal distribution and collinearity, the sequence alignment of the core glucosyl hydrolase domains was further applied. 30 BnaBAMs, 11 BraBAMs and 17 BoBAMs exhibited uneven distribution on chromosomes of Brassica crops. The similar structural compositions of BAM genes in the same subfamily suggested that they were relatively conserved. Abiotic stresses pose one of the major constraints to plant growth and productivity worldwide. Thus, the responsiveness of BnaBAM genes under abiotic stresses were analyzed in B. napus. The expression patterns revealed a stress responsive behavior of all members, of which BnaBAM3s were more prominent. These differential expression patterns suggested an intricate regulation of BnaBAMs elicited by environmental stimuli. Conclusion: Altogether, the present study provides first insights into the BAM gene family of Brassica crops, which lays the foundation for investigating the roles of stress--responsive BnaBAM candidates in B. napus.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10688
Author(s):  
Lili Niu ◽  
Hanghang Li ◽  
Zhihua Song ◽  
Biying Dong ◽  
Hongyan Cao ◽  
...  

ATP-binding cassette (ABC) transporters are a class of proteins found in living organisms that mediate transmembrane transport by hydrolyzing ATP. They play a vital role in the physiological processes of growth and development in plants. The most numerous sub-type transporter in the ABC transporter family is the ABCG group and which have the most complex function in a plant’s response to abiotic stresses. Our study focused on the effect of ABCG transporters in the adaptation of the pigeon pea to adverse environments (such as drought, salt, temperature, etc.). We conducted a functional analysis of ABCG transporters in the pigeon pea and their role in response to abiotic stresses. A total of 51 ABCG genes (CcABCGs) were identified, and phylogenetic analysis was conducted. We also identified the physicochemical properties of the encoded proteins, predicted their subcellular localization, and identified of the conserved domains. Expression analysis showed that ABCG genes have different expression profiles with tissues and abiotic stresses. Our results showed that CcABCG28 was up-regulated at low temperatures, and CcABCG7 was up-regulated with drought and aluminum stress. The initial results revealed that ABCG transporters are more effective in the abiotic stress resistance of pigeon peas, which improves our understanding of their application in abiotic stress resistance.


2021 ◽  
pp. 1-15
Author(s):  
Zengzhi Si ◽  
Yake Qiao ◽  
Kai Zhang ◽  
Zhixin Ji ◽  
Jinling Han

Sweetpotato, <i>Ipomoea batatas</i> (L.) Lam., is an important and widely grown crop, yet its production is affected severely by biotic and abiotic stresses. The nucleotide binding site (NBS)-encoding genes have been shown to improve stress tolerance in several plant species. However, the characterization of NBS-encoding genes in sweetpotato is not well-documented to date. In this study, a comprehensive analysis of NBS-encoding genes has been conducted on this species by using bioinformatics and molecular biology methods. A total of 315 NBS-encoding genes were identified, and 260 of them contained all essential conserved domains while 55 genes were truncated. Based on domain architectures, the 260 NBS-encoding genes were grouped into 6 distinct categories. Phylogenetic analysis grouped these genes into 3 classes: TIR, CC (I), and CC (II). Chromosome location analysis revealed that the distribution of NBS-encoding genes in chromosomes was uneven, with a number ranging from 1 to 34. Multiple stress-related regulatory elements were detected in the promoters, and the NBS-encoding genes’ expression profiles under biotic and abiotic stresses were obtained. According to the bioinformatics analysis, 9 genes were selected for RT-qPCR analysis. The results revealed that <i>IbNBS75</i>, <i>IbNBS219</i>, and <i>IbNBS256</i> respond to stem nematode infection; <i>Ib­NBS240</i>, <i>IbNBS90</i>, and <i>IbNBS80</i> respond to cold stress, while <i>IbNBS208</i>, <i>IbNBS71</i>, and <i>IbNBS159</i> respond to 30% PEG treatment. We hope these results will provide new insights into the evolution of NBS-encoding genes in the sweetpotato genome and contribute to the molecular breeding of sweetpotato in the future.


2020 ◽  
Vol 21 (5) ◽  
pp. 1752 ◽  
Author(s):  
Jin Yang ◽  
Jie Zhou ◽  
Hong-Jun Zhou ◽  
Mang-Mang Wang ◽  
Ming-Ming Liu ◽  
...  

Phosphate (Pi) transporters play critical roles in Pi acquisition and homeostasis. However, currently little is known about these genes in oil crops. In this study, we aimed to characterize the five Pi transporter gene families (PHT1-5) in allotetraploid Brassica napus. We identified and characterized 81 putative PHT genes in B. napus (BnaPHTs), including 45 genes in PHT1 family (BnaPHT1s), four BnaPHT2s, 10 BnaPHT3s, 13 BnaPHT4s and nine BnaPHT5s. Phylogenetic analyses showed that the largest PHT1 family could be divided into two groups (Group I and II), while PHT4 may be classified into five, Groups I-V. Gene structure analysis revealed that the exon-intron pattern was conservative within the same family or group. The sequence characteristics of these five families were quite different, which may contribute to their functional divergence. Transcription factor (TF) binding network analyses identified many potential TF binding sites in the promoter regions of candidates, implying their possible regulating patterns. Collinearity analysis demonstrated that most BnaPHTs were derived from an allopolyploidization event (~40.7%) between Brassica rapa and Brassica oleracea ancestors, and small-scale segmental duplication events (~39.5%) in the descendant. RNA-Seq analyses proved that many BnaPHTs were preferentially expressed in leaf and flower tissues. The expression profiles of most colinearity-pairs in B. napus are highly correlated, implying functional redundancy, while a few pairs may have undergone neo-functionalization or sub-functionalization during evolution. The expression levels of many BnaPHTs tend to be up-regulated by different hormones inductions, especially for IAA, ABA and 6-BA treatments. qRT-PCR assay demonstrated that six BnaPHT1s (BnaPHT1.11, BnaPHT1.14, BnaPHT1.20, BnaPHT1.35, BnaPHT1.41, BnaPHT1.44) were significantly up-regulated under low- and/or rich- Pi conditions in B. napus roots. This work analyzes the evolution and expression of the PHT family in Brassica napus, which will help further research on their role in Pi transport.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10617
Author(s):  
Jie Li ◽  
Xinhao Liu ◽  
Qingmei Wang ◽  
Junyan Sun ◽  
Dexian He

To set a systematic study of the Sorghum cystatins (SbCys) gene family, a genome-wide analysis of the SbCys family genes was performed by bioinformatics-based methods. In total, 18 SbCys genes were identified in Sorghum, which were distributed unevenly on chromosomes, and two genes were involved in a tandem duplication event. All SbCys genes had similar exon/intron structure and motifs, indicating their high evolutionary conservation. Transcriptome analysis showed that 16 SbCys genes were expressed in different tissues, and most genes displayed higher expression levels in reproductive tissues than in vegetative tissues, indicating that the SbCys genes participated in the regulation of seed formation. Furthermore, the expression profiles of the SbCys genes revealed that seven cystatin family genes were induced during Bipolaris sorghicola infection and only two genes were responsive to aphid infestation. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) confirmed that 17 SbCys genes were induced by one or two abiotic stresses (dehydration, salt, and ABA stresses). The interaction network indicated that SbCys proteins were associated with several biological processes, including seed development and stress responses. Notably, the expression of SbCys4 was up-regulated under biotic and abiotic stresses, suggesting its potential roles in mediating the responses of Sorghum to adverse environmental impact. Our results provide new insights into the structural and functional characteristics of the SbCys gene family, which lay the foundation for better understanding the roles and regulatory mechanism of Sorghum cystatins in seed development and responses to different stress conditions.


Sign in / Sign up

Export Citation Format

Share Document