scholarly journals Topical exposure to triclosan inhibits Th1 immune responses and reduces T cells responding to influenza infection in mice

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244436
Author(s):  
Hillary L. Shane ◽  
Sreekumar Othumpangat ◽  
Nikki B. Marshall ◽  
Francoise Blachere ◽  
Ewa Lukomska ◽  
...  

Healthcare workers concurrently may be at a higher risk of developing respiratory infections and allergic disease, such as asthma, than the general public. Increased incidence of allergic diseases is thought to be caused, in part, due to occupational exposure to chemicals that induce or augment Th2 immune responses. However, whether exposure to these chemical antimicrobials can influence immune responses to respiratory pathogens is unknown. Here, we use a BALB/c murine model to test if the Th2-promoting antimicrobial chemical triclosan influences immune responses to influenza A virus. Mice were dermally exposed to 2% triclosan for 7 days prior to infection with a sub-lethal dose of mouse adapted PR8 A(H1N1) virus (50 pfu); triclosan exposure continued until 10 days post infection (dpi). Infected mice exposed to triclosan did not show an increase in morbidity or mortality, and viral titers were unchanged. Assessment of T cell responses at 10 dpi showed a decrease in the number of total and activated (CD44hi) CD4+ and CD8+ T cells at the site of infection (BAL and lung) in triclosan exposed mice compared to controls. Influenza-specific CD4+ and CD8+ T cells were assessed using MHCI and MHCII tetramers, with reduced populations, although not reaching statistical significance at these sites following triclosan exposure. Reductions in the Th1 transcription factor T-bet were seen in both activated and tetramer+ CD4+ and CD8+ T cells in the lungs of triclosan exposed infected mice, indicating reduced Th1 polarization and providing a potential mechanism for numerical reduction in T cells. Overall, these results indicate that the immune environment induced by triclosan exposure has the potential to influence the developing immune response to a respiratory viral infection and may have implications for healthcare workers who may be at an increased risk for developing infectious diseases.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4482-4482
Author(s):  
Tanja A. Gruber ◽  
Dianne C. Skelton ◽  
Donald B. Kohn

Abstract Current intensive chemotherapy regimens have dramatically increased survival in acute lymphoblastic leukemia (ALL) patients compared to the 1950s when single agent chemotherapy was used. Despite this success certain subsets of patients have a high rate of relapse such as those with the Philadelphia chromosome (Ph+). Because the Bcr-Abl oncogene is a novel protein product and uniquely expressed in the leukemia clone, it has the potential to generate anti-leukemic immune responses. Our lab has been studying immunotheraputic approaches for Ph+ ALL using a murine model. Previous data have demonstrated that transduction of leukemia cells with the immunomodulators CD40Ligand, CD80, and GM-CSF generate T and NK cell immune responses. When irradiated and given as a vaccine these gene-modified cells are able to protect a portion of mice from an otherwise lethal dose of leukemia. We looked at the ability to systemic IL-12 treatments to potentiate this immune response and found that IL-12 alone was able to eliminate pre-existing disease in mice. IL-12 treatments, however, did not establish immunologic memory and did not protect mice from subsequent re-challenge with a lethal dose of leukemia. IL-12 protection was primarily mediated by CD4 and CD8 T cells as demonstrated by a decrease in survival in nude mice. When CD4 or CD8 T cells were depleted individually, however, protection was maintained indicating that one cell type can compensate for the other in its absence. Depletion of NK cells from Nude mice further decreased survival indicating a role for these cells in the protection. Thus protection was mediated in part by CD4 T lymphocytes, CD8 T lymphocytes, and Natural Killer cells. The ability of IL-12 to activate three different cell types may explain the efficacy seen in this model, where other cytokines alone have failed. In combination, IL-12 and our leukemia cell vaccine are effective in eliminating pre-established aggressive Philadelphia chromosome positive leukemia and establishing long lasting immunity from subsequent lethal doses of wild type leukemia. As expected, the immunologic memory generated by vaccination with gene modified leukemia cells was mediated by CD4 T cells as indicated by depletion studies. These studies demonstrate the feasibility of immunotheraputic approaches in the treatment of Ph+ ALL.


2021 ◽  
Vol 12 ◽  
Author(s):  
Judith Del Campo ◽  
Julien Bouley ◽  
Marion Chevandier ◽  
Carine Rousset ◽  
Marjorie Haller ◽  
...  

Tissue-resident memory (TRM) CD8+ T-cells play a crucial role in the protection against influenza infection but remain difficult to elicit using recombinant protein vaccines. OVX836 is a recombinant protein vaccine, obtained by the fusion of the DNA sequence of the influenza A nucleoprotein (NP) to the DNA sequence of the OVX313 heptamerization domain. We previously demonstrated that OVX836 provides broad-spectrum protection against influenza viruses. Here, we show that OVX836 intramuscular (IM) immunization induces higher numbers of NP-specific IFNγ-producing CD8+ T-cells in the lung, compared to mutant NP (NPm) and wild-type NP (NPwt), which form monomeric and trimeric structures, respectively. OVX836 induces cytotoxic CD8+ T-cells and high frequencies of lung TRM CD8+ T-cells, while inducing solid protection against lethal influenza virus challenges for at least 90 days. Adoptive transfer experiments demonstrated that protection against diverse influenza subtypes is mediated by NP-specific CD8+ T-cells isolated from the lung and spleen following OVX836 vaccination. OVX836 induces a high number of NP-specific lung CD8+ TRM-cells for long-term protection against influenza viruses.


Author(s):  
Yeonsu Kim ◽  
Xiaoyan Zheng ◽  
Kathrin Eschke ◽  
M. Zeeshan Chaudhry ◽  
Federico Bertoglio ◽  
...  

AbstractGlobal pandemics caused by influenza or coronaviruses cause severe disruptions to public health and lead to high morbidity and mortality. There remains a medical need for vaccines against these pathogens. CMV (cytomegalovirus) is a β-herpesvirus that induces uniquely robust immune responses in which remarkably large populations of antigen-specific CD8+ T cells are maintained for a lifetime. Hence, CMV has been proposed and investigated as a novel vaccine vector for expressing antigenic peptides or proteins to elicit protective cellular immune responses against numerous pathogens. We generated two recombinant murine CMV (MCMV) vaccine vectors expressing hemagglutinin (HA) of influenza A virus (MCMVHA) or the spike protein of severe acute respiratory syndrome coronavirus 2 (MCMVS). A single injection of MCMVs expressing either viral protein induced potent neutralizing antibody responses, which strengthened over time. Importantly, MCMVHA-vaccinated mice were protected from illness following challenge with the influenza virus, and we excluded that this protection was due to the effects of memory T cells. Conclusively, we show here that MCMV vectors induce not only long-term cellular immunity but also humoral responses that provide long-term immune protection against clinically relevant respiratory pathogens.


2021 ◽  
Author(s):  
Luka Cicin-Sain ◽  
Yeonsu Kim ◽  
Xiaoyan Zheng ◽  
Kathrin Eschke ◽  
M. Zeeshan Chaudhry ◽  
...  

Abstract Global pandemics by influenza or coronaviruses cause severe disruptions to the public health and lead to severe morbidity and mortality. Vaccines against these pathogens remain a medical need. CMV (cytomegalovirus) is a β-herpesvirus that induces uniquely robust immune responses, where outstandingly large populations of antigen-specific CD8+ T cells are maintained for a lifetime. Hence, CMV has been proposed and investigated as a novel vaccine vector expressing antigenic peptides or proteins to elicit protective cellular immune responses against numerous pathogens. We generated two recombinant murine CMV (MCMV) vaccine vectors expressing the hemagglutinin (HA) of influenza A virus (MCMVHA) or the spike protein of the severe acute respiratory syndrome coronavirus 2 (MCMVS). A single shot of MCMVs expressing either viral protein induced potent neutralizing antibody responses, which strengthened over time. Importantly, MCMVHA vaccinated mice were protected from illness following challenge with the influenza virus, and we excluded that this protection was due to effects of memory T cells. Conclusively, we show here that MCMV vectors do not only induce long-term cellular immunity, but also humoral responses that provide long-term immune protection against clinically relevant respiratory pathogens.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ken Goda ◽  
Tsuneaki Kenzaka ◽  
Masahiko Hoshijima ◽  
Akihiro Yachie ◽  
Hozuka Akita

Abstract Background Exotoxins secreted from Staphylococcus aureus or Streptococcus pyogenes act as superantigens that induce systemic release of inflammatory cytokines and are a common cause of toxic shock syndrome (TSS). However, little is known about TSS caused by coagulase-negative staphylococci (CoNS) and the underlying mechanisms. Here, we present a rare case of TSS caused by Staphylococcus simulans (S. simulans). Case presentation We report the case of a 75-year-old woman who developed pneumococcal pneumonia and bacteremia from S. simulans following an influenza infection. The patient met the clinical criteria for probable TSS, and her symptoms included fever of 39.5 °C, diffuse macular erythroderma, conjunctival congestion, vomiting, diarrhea, liver dysfunction, and disorientation. Therefore, the following treatment was initiated for bacterial pneumonia complicating influenza A with suspected TSS: meropenem (1 g every 8 h), vancomycin (1 g every 12 h), and clindamycin (600 mg every 8 h). Blood cultures taken on the day after admission were positive for CoNS, whereas sputum and pharyngeal cultures grew Streptococcus pneumoniae (Geckler group 4) and methicillin-sensitive S. aureus, respectively. However, exotoxins thought to cause TSS, such as TSS toxin-1 and various enterotoxins, were not detected. The patient’s therapy was switched to cefazolin (2 g every 8 h) and clindamycin (600 mg every 8 h) for 14 days based on microbiologic test results. She developed desquamation of the fingers on hospital day 8 and was diagnosed with TSS. Conventional exotoxins, such as TSST-1, and S. aureus enterotoxins were not detected in culture samples. The serum levels of inflammatory cytokines, such as neopterin and IL-6, were high. CD8+ T cells were activated in peripheral blood. Vβ2+ population activation, which is characteristic for TSST-1, was not observed in the Vβ usage of CD8+ T cells in T cell receptor Vβ repertoire distribution analysis. Conclusions We present a case of S. simulans-induced TSS. Taken together, we speculate that no specific exotoxins are involved in the induction of TSS in this patient. A likely mechanism is uncontrolled cytokine release (i.e., cytokine storm) induced by non-specific immune reactions against CoNS proliferation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Z. Shen ◽  
M. Rodriguez-Garcia ◽  
M. V. Patel ◽  
C. R. Wira

AbstractRegulation of endometrial (EM) CD8+T cells is essential for successful reproduction and protection against pathogens. Suppression of CD8+T cells is necessary for a tolerogenic environment that promotes implantation and pregnancy. However, the mechanisms regulating this process remain unclear. Sex hormones are known to control immune responses directly on immune cells and indirectly through the tissue environment. When the actions of estradiol (E2), progesterone (P) and TGFβ on EM CD8+T cells were evaluated, cytotoxic activity, perforin and granzymes were directly suppressed by E2 and TGFβ but not P. Moreover, incubation of polarized EM epithelial cells with P, but not E2, increased TGFβ secretion. These findings suggest that E2 acts directly on CD8+T cell to suppress cytotoxic activity while P acts indirectly through induction of TGFβ production. Understanding the mechanisms involved in regulating endometrial CD8+T cells is essential for optimizing reproductive success and developing protective strategies against genital infections and gynecological cancers.


Blood ◽  
2003 ◽  
Vol 101 (3) ◽  
pp. 807-814 ◽  
Author(s):  
James W. Lillard ◽  
Udai P. Singh ◽  
Prosper N. Boyaka ◽  
Shailesh Singh ◽  
Dennis D. Taub ◽  
...  

AbstractMacrophage inflammatory protein-1α (MIP-1α) and MIP-1β are distinct but highly homologous CC chemokines produced by a variety of host cells in response to various external stimuli and share affinity for CCR5. To better elucidate the role of these CC chemokines in adaptive immunity, we have characterized the affects of MIP-1α and MIP-1β on cellular and humoral immune responses. MIP-1α stimulated strong antigen (Ag)–specific serum immunoglobulin G (IgG) and IgM responses, while MIP-1β promoted lower IgG and IgM but higher serum IgA and IgE antibody (Ab) responses. MIP-1α elevated Ag-specific IgG1 and IgG2b followed by IgG2a and IgG3 subclass responses, while MIP-1β only stimulated IgG1 and IgG2b subclasses. Correspondingly, MIP-1β produced higher titers of Ag-specific mucosal secretory IgA Ab levels when compared with MIP-1α. Splenic T cells from MIP-1α– or MIP-1β–treated mice displayed higher Ag-specific Th1 (interferon-γ [IFN-γ]) as well as selective Th2 (interleukin-5 [IL-5] and IL-6) cytokine responses than did T cells from control groups. Interestingly, mucosally derived T cells from MIP-1β–treated mice displayed higher levels of IL-4 and IL-6 compared with MIP-1α–treated mice. However, MIP-1α effectively enhanced Ag-specific cell-mediated immune responses. In correlation with their selective effects on humoral and cellular immune responses, these chemokines also differentially attract CD4+ versus CD8+ T cells and modulate CD40, CD80, and CD86 expressed by B220+ cells as well as CD28, 4-1BB, and gp39 expression by CD4+ and CD8+ T cells in a dose-dependent fashion. Taken together, these studies suggest that these CC chemokines differentially enhance mucosal and serum humoral as well as cellular immune responses.


Sign in / Sign up

Export Citation Format

Share Document