scholarly journals Transcriptomic analysis reveals key transcription factors associated to drought tolerance in a wild papaya (Carica papaya) genotype

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245855
Author(s):  
Humberto Estrella-Maldonado ◽  
Amaranta Girón Ramírez ◽  
Gabriela Fuentes Ortiz ◽  
Santy Peraza-Echeverría ◽  
Octavio Martínez-de la Vega ◽  
...  

Most of the commercial papaya genotypes show susceptibility to water deficit stress and require high volumes of irrigation water to yield properly. To tackle this problem, we have collected wild native genotypes of Carica papaya that have proved to show better physiological performance under water deficit stress than the commercial cultivar grown in Mexico. In the present study, plants from a wild Carica papaya genotype and a commercial genotype were subjected to water deficit stress (WDS), and their response was characterized in physiological and molecular terms. The physiological parameters measured (water potential, photosynthesis, Fv/Fm and electrolyte leakage) confirmed that the papaya wild genotype showed better physiological responses than the commercial one when exposed to WDS. Subsequently, RNA-Seq was performed for 4 cDNA libraries in both genotypes (susceptible and tolerant) under well-watered conditions, and when they were subjected to WDS for 14 days. Consistently, differential expression analysis revealed that after 14 days of WDS, the wild tolerant genotype had a higher number of up-regulated genes, and a higher number of transcription factors (TF) that were differentially expressed in response to WDS, than the commercial genotype. Thus, six TF genes (CpHSF, CpMYB, CpNAC, CpNFY-A, CpERF and CpWRKY) were selected for further qRT-PCR analysis as they were highly expressed in response to WDS in the wild papaya genotype. qRT-PCR results confirmed that the wild genotype had higher expression levels (REL) in all 6 TF genes than the commercial genotype. Our transcriptomic analysis should help to unravel candidate genes that may be useful in the development of new drought-tolerant cultivars of this important tropical crop.

2020 ◽  
Vol 21 (16) ◽  
pp. 5675
Author(s):  
Panagiotis Balaskas ◽  
Jonathan A. Green ◽  
Tariq M. Haqqi ◽  
Philip Dyer ◽  
Yalda A. Kharaz ◽  
...  

Ageing is a leading risk factor predisposing cartilage to osteoarthritis. However, little research has been conducted on the effect of ageing on the expression of small non-coding RNAs (sncRNAs). RNA from young and old chondrocytes from macroscopically normal equine metacarpophalangeal joints was extracted and subjected to small RNA sequencing (RNA-seq). Differential expression analysis was performed in R using package DESeq2. For transfer RNA (tRNA) fragment analysis, tRNA reads were aligned to horse tRNA sequences using Bowtie2 version 2.2.5. Selected microRNA (miRNAs or miRs) and small nucleolar RNA (snoRNA) findings were validated using real-time quantitative Polymerase Chain Reaction (qRT-PCR) in an extended cohort of equine chondrocytes. tRNA fragments were further investigated in low- and high-grade OA human cartilage tissue. In total, 83 sncRNAs were differentially expressed between young and old equine chondrocytes, including miRNAs, snoRNAs, small nuclear RNAs (snRNAs), and tRNAs. qRT-PCR analysis confirmed findings. tRNA fragment analysis revealed that tRNA halves (tiRNAs), tiRNA-5035-GluCTC and tiRNA-5031-GluCTC-1 were reduced in both high grade OA human cartilage and old equine chondrocytes. For the first time, we have measured the effect of ageing on the expression of sncRNAs in equine chondrocytes. Changes were detected in a number of different sncRNA species. This study supports a role for sncRNAs in ageing cartilage and their potential involvement in age-related cartilage diseases.


2021 ◽  
Author(s):  
Fatemeh Khakdan ◽  
Zahra Shirazi ◽  
Mojtaba Ranjbar

Abstract Methyl chavicol and methyl eugenol are important phenylpropanoid compounds previously purified from basil. These compounds are significantly enhanced by the water deficit stress-dependent mechanism. Here, for the first time, pObCVOMT and pObEOMT promoters were extracted by the genome walking method. They were then cloned into the upstream of the β-glucuronidase (GUS) reporter gene to identify the pattern of GUS water deficit stress-specific expression. Histochemical GUS assays showed in transgenic tobacco lines bearing the GUS gene driven by pObCVOMT and pObEOMT promoters, GUS was strongly expressed under water deficit stress. qRT-PCR analysis of pObCVOMT and pObEOMT transgenic plants confirmed the histochemical assays, indicating that the GUS expression is also significantly induced and up-regulated by increasing density of water deficit stress. This indicates these promoters are able to drive inducible expression. The cis-acting elements analysis showed that the pObCVOMT and pObEOMT promoters contained dehydration or water deficit-related transcriptional control elements.


2020 ◽  
Vol 20 (3) ◽  
Author(s):  
Guanwang Shen ◽  
Hongling Liu ◽  
Ying Lin ◽  
Dongxu Xing ◽  
Yujing Zhang ◽  
...  

Abstract Bombyx mori vitellogenin (BmVg) is highly upregulated during pupation, and the 20-hydroxyecdysone and amino acids may regulate stage-specific BmVg expression. However, previous studies showed that other factors may also affect stage-specific BmVg expression. Here, we characterized effective BmVg transcription factors by identifying the corresponding cis-regulatory elements (CREs). We prepared transgenic B. mori, in which DsRed was driven by various lengths of BmVg promoter. qRT-PCR analysis showed that DsRed expression driven by a 1.0-kb BmVg promoter (VgP1.0K) was consistent with endogenous BmVg. VgP1.0K specificity was closer to the endogenous BmVg promoter than that of VgP0.8K. These results suggest that CREs affecting stage-specific BmVg expression were localized to the 1.0-kb BmVg promoter. We investigated the effects of certain CREs that could influence the stage specificity of BmVg promoter on BmVg expression in transgenic B. mori. The relative DsRed expression was significantly reduced in transgenic female B. mori and the peak in DsRed expression was delayed after E-box CRE mutation. These results demonstrate that the E-box element enhanced BmVg expression and also affected stage-specific BmVg expression. Moreover, the relative DsRed expression was significantly increased in transgenic female of B. mori after 3×BD CRE mutation in BmVg promoter. However, the stage specificity of the mutated promoter was consistent with that of the endogenous BmVg promoter. The 3×BD element downregulated BmVg but had no effect on stage-specific BmVg expression. The present study promoted the process of elucidating the regulatory network for stage-specific BmVg expression and furnished a theoretical basis for the application of BmVg promoter.


Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 614
Author(s):  
Jibiao Fan ◽  
Yanhong Lou ◽  
Haiyan Shi ◽  
Liang Chen ◽  
Liwen Cao

Leaf senescence induced by prolonged light deficiency is inevitable whenever turfgrass is cultivated in forests, and this negatively influences the survival and aesthetic quality of the turfgrass. However, the mechanism underlying dark-induced senescence in turfgrass remained obscure. In this study, RNA sequencing was performed to analyze how genes were regulated in response to dark-induced leaf senescence in bermudagrass. A total of 159,207 unigenes were obtained with a mean length of 948 bp. The differential expression analysis showed that a total of 59,062 genes, including 52,382 up-regulated genes and 6680 down-regulated genes were found to be differentially expressed between control leaves and senescent leaves induced by darkness. Subsequent bioinformatics analysis showed that these differentially expressed genes (DEGs) were mainly related to plant hormone (ethylene, abscisic acid, jasmonic acid, auxin, cytokinin, gibberellin, and brassinosteroid) signal transduction, N-glycan biosynthesis, and protein processing in the endoplasmic reticulum. In addition, transcription factors, such as WRKY, NAC, HSF, and bHLH families were also responsive to dark-induced leaf senescence in bermudagrass. Finally, qRT-PCR analysis of six randomly selected DEGs validated the accuracy of sequencing results. Taken together, our results provide basic information of how genes respond to darkness, and contribute to the understanding of comprehensive mechanisms of dark-induced leaf senescence in turfgrass.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11239
Author(s):  
Lanya Shui ◽  
Kaisen Huo ◽  
Yan Chen ◽  
Zilin Zhang ◽  
Yanfang Li ◽  
...  

Background Vernonia amygdalina as a tropical horticultural crop has been widely used for medicinal herb, feed, and vegetable. Recently, increasing studies revealed that this species possesses multiple pharmacological properties. Notably, V. amygdalina leaves possess an abundance of flavonoids, but the specific profiles of flavonoids and the mechanisms of fl avonoid bi osynthesis in developing leaves are largely unknown. Methods The total flavonoids of V. amygdalina leaves were detected using ultraviolet spectrophotometer. The temporal flavonoid profiles of V. amygdalina leaves were analyzed by LC-MS. The transcriptome analysis of V. amygdalina leaves was performed by Illumina sequencing. Functional annotation and differential expression analysis of V. amygdalina genes were performed by Blast2GO v2.3.5 and RSEM v1.2.31, respectively. qRT-PCR analysis was used to verify the gene expressions in developing V. amygdalina leaves. Results By LC-MS analysis, three substrates (p-coumaric acid, trans-cinnamic acid, and phenylalanine) for flavonoid biosynthesis were identified in V. amygdalina leaves. Additionally, 42 flavonoids were identified from V. amygdalina leaves, including six dihydroflavones, 14 flavones, eight isoflavones, nine flavonols, two xanthones, one chalcone, one cyanidin, and one dihydroflavonol. Glycosylation and methylation were common at the hydroxy group of C3, C7, and C4’ positions. Moreover, dynamic patterns of different flavonoids showed diversity. By Illumina sequencing, the obtained over 200 million valid reads were assembled into 60,422 genes. Blast analysis indicated that 31,872 genes were annotated at least in one of public databases. Greatly increasing molecular resources makes up for the lack of gene information in V. amygdalina. By digital expression profiling and qRT-PCR, we specifically characterized some key enzymes, such as Va-PAL1, Va-PAL4, Va-C4H1, Va-4CL3, Va-ACC1, Va-CHS1, Va-CHI, Va-FNSII, and Va-IFS3, involved in flavonoid biosynthesis. Importantly, integrated metabolome and transcriptome data of V. amygdalina leaves, we systematically constructed a flavonoid biosynthetic pathway with regards to material supplying, flavonoid scaffold biosynthesis, and flavonoid modifications. Our findings contribute significantly to understand the underlying mechanisms of flavonoid biosynthesis in V. amygdalina leaves, and also provide valuable information for potential metabolic engineering.


2019 ◽  
pp. 77-84
Author(s):  
H. Estrella-Maldonado ◽  
G. Ramírez Amaranta ◽  
G. Fuentes Ortíz ◽  
E. Góngora-Castillo ◽  
S. Peraza-Echeverría ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maryam Mohammadi-Cheraghabadi ◽  
Seyed Ali Mohammad Modarres-Sanavy ◽  
Fatemeh Sefidkon ◽  
Sajad Rashidi-Monfared ◽  
Ali Mokhtassi-Bidgoli

AbstractTo study the effects of foliar application of putrescine (distilled water (0), 0.75, 1.5, and 2.25 mM) and water deficit stress (20%, 40%, 60%, and 80% available soil water depletion (ASWD)) on the physiological, biochemical, and molecular attributes of Salvia officinalis L., a factorial experiment was performed in a completely randomized design with three replications in the growth chamber. The results of Real-Time quantitative polymerase chain reaction (qRT-PCR) analysis showed that putrescine concentration, irrigation regime, and the two-way interaction between irrigation regime and putrescine concentration significantly influenced cineole synthase (CS), sabinene synthase (SS), and bornyl diphosphate synthase (BPPS) relative expression. The highest concentration of 1,8-cineole, camphor, α-thujone, β-thujone, CS, SS, and BPPS were obtained in the irrigation regime of 80% ASWD with the application of 0.75 mM putrescine. There was high correlation between expression levels of the main monoterpenes synthase and the concentration of main monoterpenes. The observed correlation between the two enzyme activities of ascorbate peroxidase (APX) and catalase (CAT) strongly suggests they have coordinated action. On the other hand, the highest peroxidase (PO) and superoxide dismutase (SOD) concentrations were obtained with the application of 0.75 mM putrescine under the irrigation regime of 40% ASWD. Putrescine showed a significant increase in LAI and RWC under water deficit stress. There was an increasing trend in endogenous putrescine when putrescine concentration was increased in all irrigation regimes. Overall, the results suggest that putrescine may act directly as a stress-protecting compound and reduced H2O2 to moderate the capacity of the antioxidative system, maintain the membrane stability, and increase secondary metabolites under water deficit stress.


2021 ◽  
Author(s):  
Maryam Mohammadi-Cheraghabadi ◽  
Seyed Ali Mohammad Modarres-Sanavy ◽  
Fatemeh Sefidkon ◽  
Sajad Rashidi-Monfared ◽  
Ali Mokhtassi-Bidgoli

Abstract To study the effects of foliar application of putrescine (distilled water (0), 0.75, 1.5, and 2.25 mM) and water deficit stress (20%, 40%, 60%, and 80% available soil water depletion (ASWD)) on the physiological, biochemical, and molecular attributes of sage, a factorial experiment was performed in a completely randomized design with three replications in the growth chamber. The results of qRT-PCR analysis showed that putrescine concentration, irrigation regime, and the two-way interaction between irrigation regime and putrescine concentration significantly influenced cineole synthase, sabinene synthase, and bornyl diphosphate synthase relative expression. The highest concentration of 1,8-cineole, camphor, α-thujone, β-thujone, cineole synthase, sabinene synthase, and bornyl diphosphate synthase were obtained in the irrigation regime of 80% ASWD with the application of 0.75 mM putrescine. There was high correlation between expression levels of the main monoterpenes synthase and the concentration of main monoterpenes. The observed correlation between the two enzyme activities of APX and CAT strongly suggests they have coordinated action. On the other hand, the highest PO and SOD concentrations were obtained with the application of 0.75 mM putrescine under the irrigation regime of 40% ASWD. Putrescine showed a significant increase in LAI and RWC under water deficit stress. There was an increasing trend in endogenous putrescine when putrescine concentration was increased in all irrigation regimes. Overall, the results suggest that putrescine may act directly as a stress-protecting compound and reduced H2O2 to moderate the capacity of the antioxidative system, maintain the membrane stability, and increase secondary metabolites under water deficit stress.


2020 ◽  
Vol 21 (15) ◽  
pp. 5440 ◽  
Author(s):  
Li Guo ◽  
Chaofeng Li ◽  
Yuanzhong Jiang ◽  
Keming Luo ◽  
Changzheng Xu

WRKY transcription factors (WRKY TFs) are one of the largest protein families in plants, and most of them play vital roles in response to biotic and abiotic stresses by regulating related signaling pathways. In this study, we isolated two WRKY TF genes PtrWRKY18 and PtrWRKY35 from Populustrichocarpa and overexpressed them in Arabidopsis. Expression pattern analyses showed that PtrWRKY18 and PtrWRKY35 respond to salicylic acid (SA), methyl JA (MeJA), abscisic acid (ABA), B. cinereal, and P. syringae treatment. The transgenic plants conferred higher B. cinerea tolerance than wild-type (WT) plants, and real-time quantitative (qRT)-PCR assays showed that PR3 and PDF1.2 had higher expression levels in transgenic plants, which was consistent with their tolerance to B. cinereal. The transgenic plants showed lower P. syringae tolerance than WT plants, and qRT-PCR analysis (PR1, PR2, and NPR1) also corresponded to this phenotype. Germination rate and root analysis showed that the transgenic plants are less sensitive to ABA, which leads to the reduced tolerance to osmotic stress and the increase of the death ratio and stomatal aperture. Compared with WT plants, a series of ABA-related genes (RD29A, ABO3, ABI4, ABI5, and DREB1A) were significantly down-regulated in PtrWRKY18 and PtrWRKY35 overexpression plants. All of these results demonstrated that the two WRKY TFs are multifunctional transcription factors in plant resistance.


Sign in / Sign up

Export Citation Format

Share Document