scholarly journals Improving water deficit tolerance of Salvia officinalis L. using putrescine

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maryam Mohammadi-Cheraghabadi ◽  
Seyed Ali Mohammad Modarres-Sanavy ◽  
Fatemeh Sefidkon ◽  
Sajad Rashidi-Monfared ◽  
Ali Mokhtassi-Bidgoli

AbstractTo study the effects of foliar application of putrescine (distilled water (0), 0.75, 1.5, and 2.25 mM) and water deficit stress (20%, 40%, 60%, and 80% available soil water depletion (ASWD)) on the physiological, biochemical, and molecular attributes of Salvia officinalis L., a factorial experiment was performed in a completely randomized design with three replications in the growth chamber. The results of Real-Time quantitative polymerase chain reaction (qRT-PCR) analysis showed that putrescine concentration, irrigation regime, and the two-way interaction between irrigation regime and putrescine concentration significantly influenced cineole synthase (CS), sabinene synthase (SS), and bornyl diphosphate synthase (BPPS) relative expression. The highest concentration of 1,8-cineole, camphor, α-thujone, β-thujone, CS, SS, and BPPS were obtained in the irrigation regime of 80% ASWD with the application of 0.75 mM putrescine. There was high correlation between expression levels of the main monoterpenes synthase and the concentration of main monoterpenes. The observed correlation between the two enzyme activities of ascorbate peroxidase (APX) and catalase (CAT) strongly suggests they have coordinated action. On the other hand, the highest peroxidase (PO) and superoxide dismutase (SOD) concentrations were obtained with the application of 0.75 mM putrescine under the irrigation regime of 40% ASWD. Putrescine showed a significant increase in LAI and RWC under water deficit stress. There was an increasing trend in endogenous putrescine when putrescine concentration was increased in all irrigation regimes. Overall, the results suggest that putrescine may act directly as a stress-protecting compound and reduced H2O2 to moderate the capacity of the antioxidative system, maintain the membrane stability, and increase secondary metabolites under water deficit stress.

2021 ◽  
Author(s):  
Maryam Mohammadi-Cheraghabadi ◽  
Seyed Ali Mohammad Modarres-Sanavy ◽  
Fatemeh Sefidkon ◽  
Sajad Rashidi-Monfared ◽  
Ali Mokhtassi-Bidgoli

Abstract To study the effects of foliar application of putrescine (distilled water (0), 0.75, 1.5, and 2.25 mM) and water deficit stress (20%, 40%, 60%, and 80% available soil water depletion (ASWD)) on the physiological, biochemical, and molecular attributes of sage, a factorial experiment was performed in a completely randomized design with three replications in the growth chamber. The results of qRT-PCR analysis showed that putrescine concentration, irrigation regime, and the two-way interaction between irrigation regime and putrescine concentration significantly influenced cineole synthase, sabinene synthase, and bornyl diphosphate synthase relative expression. The highest concentration of 1,8-cineole, camphor, α-thujone, β-thujone, cineole synthase, sabinene synthase, and bornyl diphosphate synthase were obtained in the irrigation regime of 80% ASWD with the application of 0.75 mM putrescine. There was high correlation between expression levels of the main monoterpenes synthase and the concentration of main monoterpenes. The observed correlation between the two enzyme activities of APX and CAT strongly suggests they have coordinated action. On the other hand, the highest PO and SOD concentrations were obtained with the application of 0.75 mM putrescine under the irrigation regime of 40% ASWD. Putrescine showed a significant increase in LAI and RWC under water deficit stress. There was an increasing trend in endogenous putrescine when putrescine concentration was increased in all irrigation regimes. Overall, the results suggest that putrescine may act directly as a stress-protecting compound and reduced H2O2 to moderate the capacity of the antioxidative system, maintain the membrane stability, and increase secondary metabolites under water deficit stress.


2012 ◽  
Vol 4 (1) ◽  
pp. 112-115 ◽  
Author(s):  
Hossein MARDANI ◽  
Hassan BAYAT ◽  
Amir Hossein SAEIDNEJAD ◽  
Ehsan Eyshi REZAIE

Impacts of various concentrations of salicylic acid (SA) on cucumber (Cucumis sativus L.) seedling characteristic were evaluated under different water stress levels by using a factorial arrangement based on completely randomized design with three replications at experimental greenhouse of Ferdowsi University of Mashhad, Iran. The studied factors included three water deficit levels (100% FC, 80% FC, and 60% FC) considered as first factor and five levels of SA concentrations (0, 0.25, 0.5, 0.75, and 1 mM) as second factor. Results showed that foliar application of SA at the highest concentration enhanced leaf area, leaf and dry weight while decreased stomatal conductance under high level of water deficit stress. Though, severe water deficit stress sharply raised the SPAD reading values. In general, exogenous SA application could develop cucumber seedling characteristic and improve water stress tolerance.


2015 ◽  
Vol 48 (1) ◽  
pp. 57-67 ◽  
Author(s):  
A.A. Bahari ◽  
R. Sokhtesaraei ◽  
H.R. Chaghazardi ◽  
F. Masoudi ◽  
H. Nazarli

Abstract In order to study the effects of water deficit stress and foliar application of salicylic acid (SA) on the activity of five antioxidant enzymes (catalase - CAT; EC 1.11.1.6, ascorbate peroxidase - APX; EC 1.11.1.11, glutathione reductase - GR; EC 1.6.4.2, peroxidase - POD; EC 1.11.1.7 and polyphenol oxidase - PPO; 1.14.18.1) of Thymus daenensis (subsp. lancifolius), an experiment was conducted in factorial based on completely randomized design with three replicates, during 2013. Drought treated seedlings showed elevated levels of reactive oxygen species (ROSs), with a concomitant increase in the activities of the enzymes CAT, APX, GR, POD and PPO, compared to controls. Under medium water deficit, APX and PPO activities significantly increased by higher SA concentration (2 mM), but under control and sever water deficit conditions, there was no significant difference between 1 mM and 2 mM concentrations regarding APX and PPO activity. Under all levels of available water, increase in SA concentration from 0.1 mM to1 mM induced significant increase in GR activity. The maximum amount of GR (under medium water deficit condition) achieved from 1mM of SA. While the maximum amounts of APX, PPO (under medium water deficit condition), CAT and POD (under sever water deficit condition) achieved from 2 mM of SA. In total, our results suggest that application of SA (as a trigger of signal cascade) could be advantageous against water deficit stress, and could protect thyme plants in mentioned conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. A. Gomaa ◽  
Essam E. Kandil ◽  
Atef A. M. Zen El-Dein ◽  
Mamdouh E. M. Abou-Donia ◽  
Hayssam M. Ali ◽  
...  

AbstractIn Egypt, water shortage has become a key limiting factor for agriculture. Water-deficit stress causes different morphological, physiological, and biochemical impacts on plants. Two field experiments were carried out at Etay El-Baroud Station, El-Beheira Governorate, Agriculture Research Center (ARC), Egypt, to evaluate the effect of potassium silicate (K-silicate) of maize productivity and water use efficiency (WUE). A split-plot system in the four replications was used under three irrigation intervals during the 2017 and 2018 seasons. Whereas 10, 15, and 20 days irrigation intervals were allocated in main plots, while the three foliar application treatments of K-silicate (one spray at 40 days after sowing; two sprays at 40 and 60 days; and three sprays at 40, 60, and 80 days, and a control (water spray) were distributed in the subplots. All the treatments were distributed in 4 replicates. The results indicated that irrigation every 15 days gave the highest yield in both components and quality. The highly significant of (WUE) under irrigation every 20 days. Foliar spraying of K-silicate three times resulted in the highest yield. Even under water-deficit stress, irrigation every fifteen days combined with foliar application of K-silicate three times achieved the highest values of grain yield and its components. These results show that K-silicate treatment can increase WUE and produce high grain yield requiring less irrigation.


2018 ◽  
Vol 42 (1) ◽  
Author(s):  
Fabio Santos Matos ◽  
Igor Alberto Silvestre Freitas ◽  
Lidiane Villas Boas Dos Santos ◽  
Daniel Guimarães Venâncio ◽  
Patrícia Souza da Silveira

ABSTRACT The objective of this study was to analyze the effect of water deficit stress on the growth of Dipteryx alata plants. The experiment was carried out on a bench in full sun at the Goiás State University experimental unit, in Ipameri town, Goiás. Dipteryx alata seeds were collected from native plants in that municipality and sown in four-liter pots containing a mixture of soil, sand and cattle manure at ratio 3:1:0.5, respectively. The experiment was set up following the completely randomized design with five treatments (plants irrigated for 25 days with water volumes corresponding to 0%, 25%, 50%, 75%, and 100% of daily evapotranspiration) and six replicates. Treatments were applied when the plants were 60 days old, and at 85 days the plants were assessed for the following parameters: plant height, stem diameter, number of leaves, foliar chlorophyll concentration (a+b ), total carotenoids, relative water content, transpiration, leaf, stem and root mass ratios, and total biomass. During early development, the Dipteryx alata plants were highly sensitive to water deficit, significantly slowing down vegetative growth. Accordingly, in order to remain alive, the plants drastically reduced transpiration as a result of high stomatal sensitivity.


2009 ◽  
Vol 27 (36) ◽  
pp. 6094-6100 ◽  
Author(s):  
Lindsey Goff ◽  
Karin Summers ◽  
Sameena Iqbal ◽  
Jens Kuhlmann ◽  
Michael Kunz ◽  
...  

Purpose The randomized First-Line Indolent Trial (FIT) was conducted in patients with advanced follicular lymphoma (FL), to evaluate the safety and efficacy of yttrium-90 (90Y) ibritumomab tiuxetan given as consolidation of complete or partial remission. This study of minimal residual disease was undertaken in parallel, to determine the rate of conversion from bcl-2 polymerase chain reaction (PCR) –detectable to –undetectable status and the corresponding effect on progression-free survival (PFS). Patients and Methods Blood samples from 414 patients (90Y-ibritumomab, n = 208; control, n = 206) were evaluated using real-time quantitative polymerase chain reaction (RQ-PCR); 186 were found to have the bcl-2 rearrangement and were thus eligible for inclusion in the RQ-PCR analysis. Results Overall, 90% of treated patients converted from bcl-2 PCR–detectable to –undetectable disease status, compared with 36% in the control group. Treatment significantly prolonged median PFS in patients converting to bcl-2 PCR-undetectable status (40.8 v 24.0 months in the control group; P < .01, hazard ratio [HR], 0.399). In patients who had bcl-2 PCR-detectable disease at random assignment, treatment significantly prolonged median PFS (38.4 v 8.2 months in the control group; P < .01, HR, 0.293). Conclusion Eradication of PCR-detectable disease occurred more frequently after treatment with 90Y-ibritumomab tiuxetan and was associated with prolongation of PFS.


2021 ◽  
Author(s):  
Fatemeh Khakdan ◽  
Zahra Shirazi ◽  
Mojtaba Ranjbar

Abstract Methyl chavicol and methyl eugenol are important phenylpropanoid compounds previously purified from basil. These compounds are significantly enhanced by the water deficit stress-dependent mechanism. Here, for the first time, pObCVOMT and pObEOMT promoters were extracted by the genome walking method. They were then cloned into the upstream of the β-glucuronidase (GUS) reporter gene to identify the pattern of GUS water deficit stress-specific expression. Histochemical GUS assays showed in transgenic tobacco lines bearing the GUS gene driven by pObCVOMT and pObEOMT promoters, GUS was strongly expressed under water deficit stress. qRT-PCR analysis of pObCVOMT and pObEOMT transgenic plants confirmed the histochemical assays, indicating that the GUS expression is also significantly induced and up-regulated by increasing density of water deficit stress. This indicates these promoters are able to drive inducible expression. The cis-acting elements analysis showed that the pObCVOMT and pObEOMT promoters contained dehydration or water deficit-related transcriptional control elements.


Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 138 ◽  
Author(s):  
Rujira Tisarum ◽  
Cattarin Theerawitaya ◽  
Thapanee Samphumphung ◽  
Teruhiro Takabe ◽  
Suriyan Cha-um

The aim of this investigation was to enhance overall growth, yield attributes as well as physio-biochemical adaptive strategies by exogenous foliar application of glycine betaine (GlyBet) in two rice varieties against water deficit stress under greenhouse conditions. Rice crop cvs. RD43 (low amylose content) and SPR1 (high amylose content) grown in clay pots containing garden soil until booting stage were chosen as the test plant material, sprayed by 0 (control) or 100 mM GlyBet and subsequently subjected to: MWD (mild water deficit by 8 d water withholding; 24.80% SWC; Soil water content) or SWD (severe water deficit by 14 d water withholding; 13.63% SWC) or WW (well-watered conditions or control). Free proline content in cv. RD43 was rapidly increased in relation to the degree of water deficit and suppressed by exogenous GlyBet, while free proline in cv. SPR1 was lower than cv. RD43. Overall growth performances and yield traits in both cultivars under MWD were maintained by exogenous application of GlyBet; however, these parameters declined under SWD even after the GlyBet application. Degradation of photosynthetic pigments and chlorophyll fluorescence in pretreated GlyBet plants under SWD were prevented, resulting in elevated net photosynthetic rate (Pn). Interestingly, Pn was very sensitive parameter that sharply declined under SWD in both RD43 and SPR1 genotypes. Positive relationships between physio-morphological and biochemical changes in rice genotypes were demonstrated with high correlation co-efficiency. Based on the key results, it is concluded that foliar GlyBet application may play an important role in drought-tolerant enhancement in rice crops.


2013 ◽  
Vol 48 (11) ◽  
pp. 1440-1448 ◽  
Author(s):  
Rafaella Teles Arantes Felipe ◽  
Francisco de Assis Alves Mourão Filho ◽  
Silvio Aparecido Lopes ◽  
Beatriz Madalena Januzzi Mendes ◽  
Maurel Behling ◽  
...  

The objective of this work was to evaluate the reaction of four sweet orange cultivars expressing the attacin A gene to 'Candidatus Liberibacter asiaticus' (Las) infection, a bacterium associated to huanglongbing (HLB) disease. Transgenic sweet orange plants of Hamlin, Natal, Pêra, and Valência cultivars, as well as nontransgenic controls received inocula by grafting budwood sections of HLB-infected branches. Disease progression was evaluated through observations of leaf symptoms and by polymerase chain reaction (PCR) analysis, eight months after inoculation. A completely randomized design was used, with four experiments (one for each cultivar) performed simultaneously. Bacteria title was estimated by quantitative PCR (qPCR). HLB symptoms and Las titers were present in nontransgenic and transgenic plants expressing the attacin A gene of the four sweet orange cultivars, eight months after bacteria inoculation. Five transgenic lines (transformation events) of 'Pêra' sweet orange expressing the attacin A gene have significantly lower Las titers in comparison with nontransgenic plants of this cultivar.


2015 ◽  
Vol 28 (2) ◽  
pp. 1363-1370 ◽  
Author(s):  
Mounir Mansori ◽  
Halima Chernane ◽  
Salma Latique ◽  
Abdelali Benaliat ◽  
Driss Hsissou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document