scholarly journals In vivo effects of olive oil and trans-fatty acids on miR-134, miR-132, miR-124-1, miR-9-3 and mTORC1 gene expression in a DMBA-treated mouse model

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246022
Author(s):  
Richard Molnar ◽  
Laszlo Szabo ◽  
Andras Tomesz ◽  
Arpad Deutsch ◽  
Richard Darago ◽  
...  

Both the intake of beneficial olive oil and of harmful trans-fatty acids (TFAs) in consumed foods are of great significance in tumor biology. In our present study we examined the effects they exert on the expression patterns of miR-134, miR-132, miR-124-1, miR-9-3 and mTOR in the liver, spleen and kidney of mice treated with 7,12-dimethylbenz [a] anthracene (DMBA). Feeding of TFA-containing diet significantly increased the expression of all studied miRs and mTORC1 in all organs examined, except the expression of mTORC1 in the spleen and kidney. Diet containing olive oil significantly reduced the expression of miR-124-1, miR-9-3 and mTORC1 in the liver and spleen. In the kidney, apart from the mTORC1 gene, the expression of all miRs examined significantly decreased compared to the DMBA control. According to our results, the cell membrane protective, antioxidant, and anti-inflammatory effects of olive oil and the cell membrane damaging, inflammatory, and carcinogenic properties of TFA suggest negative feedback regulatory mechanisms. In contrast to our expectations, mTORC1 gene expression in the kidney has not been shown to be an appropriate biomarker–presumably, because the many complex effects that regulate mTOR expression may quench each other.

2001 ◽  
Vol 17 (2) ◽  
pp. 99-109 ◽  
Author(s):  
Douglas T. Ross ◽  
Charles M. Perou

Cell lines derived from human tumors have historically served as the primary experimental model system for exploration of tumor cell biology and pharmacology. Cell line studies, however, must be interpreted in the context of artifacts introduced by selection and establishment of cell linesin vitro. This complication has led to difficulty in the extrapolation of biology observed in cell lines to tumor biologyin vivo. Modern genomic analysis tool like DNA microarrays and gene expression profiling now provide a platform for the systematic characterization and classification of both cell lines and tumor samples. Studies using clinical samples have begun to identify classes of tumors that appear both biologically and clinically unique as inferred from their distinctive patterns of expressed genes. In this review, we explore the relationships between patterns of gene expression in breast tumor derived cell lines to those from clinical tumor specimens. This analysis demonstrates that cell lines and tumor samples have distinctive gene expression patterns in common and underscores the need for careful assessment of the appropriateness of any given cell line as a model for a given tumor subtype.


2021 ◽  
Vol 118 (16) ◽  
pp. e2017148118
Author(s):  
Najla Kfoury ◽  
Zongtai Qi ◽  
Briana C. Prager ◽  
Michael N. Wilkinson ◽  
Lauren Broestl ◽  
...  

Sex can be an important determinant of cancer phenotype, and exploring sex-biased tumor biology holds promise for identifying novel therapeutic targets and new approaches to cancer treatment. In an established isogenic murine model of glioblastoma (GBM), we discovered correlated transcriptome-wide sex differences in gene expression, H3K27ac marks, large Brd4-bound enhancer usage, and Brd4 localization to Myc and p53 genomic binding sites. These sex-biased gene expression patterns were also evident in human glioblastoma stem cells (GSCs). These observations led us to hypothesize that Brd4-bound enhancers might underlie sex differences in stem cell function and tumorigenicity in GBM. We found that male and female GBM cells exhibited sex-specific responses to pharmacological or genetic inhibition of Brd4. Brd4 knockdown or pharmacologic inhibition decreased male GBM cell clonogenicity and in vivo tumorigenesis while increasing both in female GBM cells. These results were validated in male and female patient-derived GBM cell lines. Furthermore, analysis of the Cancer Therapeutic Response Portal of human GBM samples segregated by sex revealed that male GBM cells are significantly more sensitive to BET (bromodomain and extraterminal) inhibitors than are female cells. Thus, Brd4 activity is revealed to drive sex differences in stem cell and tumorigenic phenotypes, which can be abrogated by sex-specific responses to BET inhibition. This has important implications for the clinical evaluation and use of BET inhibitors.


2017 ◽  
Author(s):  
Najla Kfoury ◽  
Zongtai Qi ◽  
Briana C Prager ◽  
Michael N Wilkinson ◽  
Lauren Broestl ◽  
...  

Sex can be an important determinant of cancer phenotype, and exploring sex-biased tumor biology holds promise for identifying novel therapeutic targets and new approaches to cancer treatment. In an established isogenic murine model of glioblastoma, we discovered correlated transcriptome-wide sex differences in gene expression, H3K27ac marks, large Brd4-bound enhancer usage, and Brd4 localization to Myc and p53 genomic binding sites. These sex-biased gene expression patterns were also evident in human glioblastoma stem cells (GSCs). These observations led us to hypothesize that Brd4-bound enhancers might underlie sex differences in stem cell function and tumorigenicity in GBM. We found that male and female GBM cells exhibited opposing responses to pharmacological or genetic inhibition of Brd4. Brd4 knockdown or pharmacologic inhibition decreased male GBM cell clonogenicity and in vivo tumorigenesis, while increasing both in female GBM cells. These results were validated in male and female patient-derived GBM cell lines. Furthermore, analysis of the Cancer Therapeutic Response Portal of human GBM samples segregated by sex revealed that male GBM cells are significantly more sensitive to BET inhibitors than are female cells. Thus, for the first time, Brd4 activity is revealed to drive a sex differences in stem cell and tumorigenic phenotype, resulting in diametrically opposite responses to BET inhibition in male and female GBM cells. This has important implications for the clinical evaluation and use of BET inhibitors.SignificanceConsistent sex differences in incidence and outcome have been reported in numerous cancers including brain tumors. GBM, the most common and aggressive primary brain tumor, occurs with higher incidence and shorter survival in males compared to females. Brd4 is essential for regulating transcriptome-wide gene expression and specifying cell identity, including that of GBM. We report that sex-biased Brd4 activity drive sex differences in GBM and render male and female tumor cells differentially sensitive to BET inhibitors. The observed sex differences in BETi treatment strongly indicate that sex differences in disease biology translate into sex differences in therapeutic responses. This has critical implications for clinical use of BET inhibitors further affirming the importance of inclusion of sex as a biological variable.


2021 ◽  
Vol 4 (1) ◽  
pp. 22
Author(s):  
Mrinmoyee Majumder ◽  
Viswanathan Palanisamy

Control of gene expression is critical in shaping the pro-and eukaryotic organisms’ genotype and phenotype. The gene expression regulatory pathways solely rely on protein–protein and protein–nucleic acid interactions, which determine the fate of the nucleic acids. RNA–protein interactions play a significant role in co- and post-transcriptional regulation to control gene expression. RNA-binding proteins (RBPs) are a diverse group of macromolecules that bind to RNA and play an essential role in RNA biology by regulating pre-mRNA processing, maturation, nuclear transport, stability, and translation. Hence, the studies aimed at investigating RNA–protein interactions are essential to advance our knowledge in gene expression patterns associated with health and disease. Here we discuss the long-established and current technologies that are widely used to study RNA–protein interactions in vivo. We also present the advantages and disadvantages of each method discussed in the review.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 360
Author(s):  
Guodong Rao ◽  
Jianguo Zhang ◽  
Xiaoxia Liu ◽  
Xue Li ◽  
Chenhe Wang

Olive oil has been favored as high-quality edible oil because it contains balanced fatty acids (FAs) and high levels of minor components. The contents of FAs and minor components are variable in olive fruits of different color at harvest time, which render it difficult to determine the optimal harvest strategy for olive oil producing. Here, we combined metabolome, Pacbio Iso-seq, and Illumina RNA-seq transcriptome to investigate the association between metabolites and gene expression of olive fruits at harvest time. A total of 34 FAs, 12 minor components, and 181 other metabolites (including organic acids, polyols, amino acids, and sugars) were identified in this study. Moreover, we proposed optimal olive harvesting strategy models based on different production purposes. In addition, we used the combined Pacbio Iso-seq and Illumina RNA-seq gene expression data to identify genes related to the biosynthetic pathways of hydroxytyrosol and oleuropein. These data lay the foundation for future investigations of olive fruit metabolism and gene expression patterns, and provide a method to obtain olive harvesting strategies for different production purposes.


2019 ◽  
Author(s):  
Robin A. Sorg ◽  
Clement Gallay ◽  
Jan-Willem Veening

AbstractStreptococcus pneumoniae can cause disease in various human tissues and organs, including the ear, the brain, the blood and the lung, and thus in highly diverse and dynamic environments. It is challenging to study how pneumococci control virulence factor expression, because cues of natural environments and the presence of an immune system are difficult to simulate in vitro. Here, we apply synthetic biology methods to reverse-engineer gene expression control in S. pneumoniae. A selection platform is described that allows for straightforward identification of transcriptional regulatory elements out of combinatorial libraries. We present TetR- and LacI-regulated promoters that show expression ranges of four orders of magnitude. Based on these promoters, regulatory networks of higher complexity are assembled, such as logic AND and IMPLY gates. Finally, we demonstrate single-copy genome-integrated toggle switches that give rise to bimodal population distributions. The tools described here can be used to mimic complex expression patterns, such as the ones found for pneumococcal virulence factors, paving the way for in vivo investigations of the importance of gene expression control on the pathogenicity of S. pneumoniae.


2006 ◽  
Vol 18 (2) ◽  
pp. 144
Author(s):  
W. Shi ◽  
F. Yang ◽  
E. Wolf ◽  
V. Zakharchenko

The differential epigenetic changes in embryos from different species provide a model to study how the nucleus from one species interacts with cytoplasm from another species. In this study we examined histone methylation at lysine 9 of histone 3 (K9H3) and lysine 20 of histone H4 (K20H4) and the expression levels of three early development-related genes (Oct-4, Hsp 70.1 and Hprt) in individual intra- and inter-species cloned and control embryos at the 1-, 2-, 4- and 8-cell stages. Mouse fetal fibroblast (MFF) nuclei were transferred into mouse, bovine, or rabbit oocytes. As control, we used in vivo derived (mouse and rabbit) or in vitro-produced (bovine) embryos. Histone methylation was detected by anti-MeK9H3 and anti-MeK20H4 antibodies. Gene expression analysis was performed using a quantitative RT-PCR technique (Daniels et al. 2000 Biol. Reprod. 63, 1034-1040). Data were analyzed by Student's t-test. No embryos from inter-species cloning (MFF-bovine and MFF-rabbit) survived beyond the 8-12 cell stage. MFF-mouse and MFF-bovine embryos exhibited demethylation of K9H3 and K20H4 at the 2-cell stage and the methylation level was increased at the 4-cell stage, but no demethylation was observed at the 2-cell stage of MFF-rabbit embryos and the methylation level in these embryos was significantly higher than that of in vivo rabbit embryos. The level of Oct-4 mRNA was low at the 1- and 2-cell stages of in vivo mouse embryos and increased at the 8-cell stage. No significant increase in Oct-4 transcript was detected at the 8-cell stage of inter-species cloned embryos. The expression of Hsp 70.1 in in vivo mouse embryos was increased at the 2-cell stage and decreased to a level similar to that in the zygote at the 8-cell stage. In cloned embryos, Hsp 70.1 transcripts were also increased at the 2-cell stage, but there was no significant decrease of Hsp70.1 mRNA abundance at the 8-cell stage of inter-species embryos as compared to the corresponding 2-cell stage. For MFF-mouse embryos, Hsp 70.1 expression was increased at the 2-cell stage, but at the 8-cell stage the transcript level was at the level similar to that in inter-species clones. Hprt expression was increased at the 8-cell stage of in vivo mouse embryos. The dynamic change of Hprt transcript in MFF-mouse embryos was not significantly different from that of in vivo mouse embryos, but no significant change of Hprt expression occurred in the development of MFF-bovine and MFF-rabbit embryos. Differential epigenetic characteristics of mouse somatic nucleus after transfer into oocytes from different species suggest the existence of incompatibilities of nuclear-cytoplasm interaction between distantly related species. This abnormal interaction at the time of genome activation may affect normal development. This work was supported by the Bayerische Forschungsstiftung and by Therapeutic Human Polyclonals, Inc.


2006 ◽  
Vol 18 (2) ◽  
pp. 142
Author(s):  
N. Ruddock ◽  
K. Wilson ◽  
M. Cooney ◽  
R. Tecirlioglu ◽  
V. Hall ◽  
...  

Developmental pathways in the mammalian embryo are profoundly influenced by the epigenetic interaction of the environment and the genome. Loss of epigenetic control has been implicated in aberrant gene expression and altered imprinting patterns with consequence to the physiology and viability of the conceptus. Bovine somatic cell nuclear transfer (SCNT) is contingent on in vitro culture, and both SCNT and culture conditions are known to induce changes in embryonic gene expression patterns. Using these experimental models, this study compared gene expression of Day 7 cloned blastocysts created from three different SCNT protocols using the same cell line, with Day 7 in vivo blastocysts to elucidate mechanisms responsible for variations in phenotypic outcomes. SCNT methods included: (1) traditional SCNT by subzonal injection (SI); (2) handmade cloning (HMC); and (3) modified serial nuclear transfer (SNT), developed within the group. Four imprinted genes (Grb10, Ndn, Nnat, and Ube3a), four chromatin remodeling genes (Cbx1, Cbx3, Smarca4, and Smarcb1) and two genes implicated in polycystic liver disease (Prkcsh and Sec63) were analyzed in single blastocysts from each treatment (n = 5). All blastocysts expressed Actin, Oct-4 and Ifn-tau. All genes were sequence verified. Several genes were expressed ubiquitously across all groups, including Ndn, Ube3a, Cbx1, Cbx3, and Smarcb1. Interestingly, Grb10 was not expressed in two HMCs and one SNT blastocyst. Nnat was weakly expressed in one in vivo blastocyst and in the majority of cloned blastocysts in all groups. Prkcsh and Sec63 were expressed in all but one HMC blastocyst. While gene expression patterns were mostly maintained following SCNT, the imprinted genes Nnat and Grb10 showed instances of differential or abnormal expression in SCNT embryos. The chromatin remodeling genes were maintained in all SCNT treatments. Prkcsh and Sec63 were both absent in one HMC blastocyst, with implications for liver dysfunction, a condition previously reported in abnormal cloned offspring. The variable mRNA expression following SCNT provides an insight into genetic and environmental factors controlling implantation, placentation, organ formation, and fetal growth.


Sign in / Sign up

Export Citation Format

Share Document