scholarly journals The first late cretaceous mawsoniid coelacanth (Sarcopterygii: Actinistia) from North America: Evidence of a lineage of extinct ‘living fossils’

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259292
Author(s):  
Lionel Cavin ◽  
Pablo Toriño ◽  
Nathan Van Vranken ◽  
Bradley Carter ◽  
Michael J. Polcyn ◽  
...  

Today, the only living genus of coelacanth, Latimeria is represented by two species along the eastern coast of Africa and in Indonesia. This sarcopterygian fish is nicknamed a "living fossil", in particular because of its slow evolution. The large geographical distribution of Latimeria may be a reason for the great resilience to extinction of this lineage, but the lack of fossil records for this genus prevents us from testing this hypothesis. Here we describe isolated bones (right angular, incomplete basisphenoid, fragments of parasphenoid and pterygoid) found in the Cenomanian Woodbine Formation in northeast Texas that are referred to the mawsoniid coelacanth Mawsonia sp. In order to assess the impact of this discovery on the alleged characteristic of "living fossils" in general and of coelacanths in particular: 1) we compared the average time duration of genera of ray-finned fish and coelacanth in the fossil record; 2) we compared the biogeographic signal from Mawsonia with the signal from the rest of the vertebrate assemblage of the Woodbine formation; and 3) we compared these life traits with those of Latimeria. The stratigraphical range of Mawsonia is at least 50 million years. Since Mawsonia was a fresh, brackish water fish with probably a low ability to cross large sea barriers and because most of the continental components of the Woodbine Fm vertebrate assemblage exhibit Laurasian affinities, it is proposed that the Mawsonia’s occurrence in North America is more likely the result of a vicariant event linked to the break-up of Pangea rather than the result of a dispersal from Gondwana. The link between a wide geographic distribution and the resilience to extinction demonstrated here for Mawsonia is a clue that a similar situation existed for Latimeria, which allowed this genus to live for tens of millions of years.

2020 ◽  
Vol 1 (2) ◽  
pp. 77-92
Author(s):  
Rotimi Williams Omotoye

Pentecostalism as a new wave of Christianity became more pronounced in 1970's and beyond in Nigeria. Since then scholars of Religion, History, Sociology and Political Science have shown keen interest in the study of the Churches known as Pentecostals because of the impact they have made on the society. The Redeemed Christian Church of God (RCCG) was established by Pastor Josiah Akindayomi in Lagos,Nigeria in 1952. After his demise, he was succeeded by Pastor Adeboye Adejare Enock. The problem of study of this research was an examination of the expansion of the Redeemed Christian Church of God to North America, Caribbean and Canada. The missionary activities of the church could be regarded as a reversed mission in the propagation of Christianity by Africans in the Diaspora. The methodology adopted was historical. The primary and secondary sources of information were also germane in the research. The findings of the research indicated that the Redeemed Christian Church of God was founded in North America by Immigrants from Nigeria. Pastor Adeboye Enock Adejare had much influence on the Church within and outside the country because of his charisma. The Church has become a place of refuge for many immigrants. They are also contributing to the economy of the United States of America. However, the members of the Church were faced with some challenges, such as security scrutiny by the security agencies. In conclusion, the RCCGNA was a denomination that had been accepted and embraced by Nigerians and African immigrants in the United States of America.


2021 ◽  
Vol 36 (2) ◽  
Author(s):  
Scott Lidgard ◽  
Alan C. Love

AbstractDespite the iconic roles of coelacanths, cycads, tadpole shrimps, and tuataras as taxa that demonstrate a pattern of morphological stability over geological time, their status as living fossils is contested. We responded to these controversies with a recommendation to rethink the function of the living fossil concept (Lidgard and Love in Bioscience 68:760–770, 2018). Concepts in science do useful work beyond categorizing particular items and we argued that the diverse and sometimes conflicting criteria associated with categorizing items as living fossils represent a complex problem space associated with answering a range of questions related to prolonged evolutionary stasis. Turner (Biol Philos 34:23, 2019) defends the living concept against a variety of recent skeptics, but his criticism of our approach relies on a misreading of our main argument. This misreading is instructive because it brings into view the value of three central themes for rethinking the living fossil concept—the function of concepts in biology outside of categorization, the methodological importance of distinguishing parts and wholes in conceptualizing evolutionary phenomena, and articulating diverse explanatory goals associated with these phenomena.


Author(s):  
Runze Li ◽  
Rebecca C Deed

Abstract It is standard practice to ferment white wines at low temperatures (10-18 °C). However, low temperatures increase fermentation duration and risk of problem ferments, leading to significant costs. The lag duration at fermentation initiation is heavily impacted by temperature; therefore, identification of Saccharomyces cerevisiae genes influencing fermentation kinetics is of interest for winemaking. We selected 28 S. cerevisiae BY4743 single deletants, from a prior list of open reading frames (ORFs) mapped to quantitative trait loci (QTLs) on chromosomes VII and XIII, influencing the duration of fermentative lag time. Five BY4743 deletants, Δapt1, Δcgi121, Δclb6, Δrps17a, and Δvma21, differed significantly in their fermentative lag duration compared to BY4743 in synthetic grape must (SGM) at 15 °C, over 72 h. Fermentation at 12.5 °C for 528 h confirmed the longer lag times of BY4743 Δcgi121, Δrps17a, and Δvma21. These three candidate ORFs were deleted in S. cerevisiae RM11-1a and S288C to perform single reciprocal hemizygosity analysis (RHA). RHA hybrids and single deletants of RM11-1a and S288C were fermented at 12.5 °C in SGM and lag time measurements confirmed that the S288C allele of CGI121 on chromosome XIII, encoding a component of the EKC/KEOPS complex, increased fermentative lag phase duration. Nucleotide sequences of RM11-1a and S288C CGI121 alleles differed by only one synonymous nucleotide, suggesting that intron splicing, codon bias, or positional effects might be responsible for the impact on lag phase duration. This research demonstrates a new role of CGI121 and highlights the applicability of QTL analysis for investigating complex phenotypic traits in yeast.


Author(s):  
Frode Eika Sandnes

AbstractPurpose: Some universal accessibility practitioners have voiced that they experience a mismatch in the research focus and the need for knowledge within specialized problem domains. This study thus set out to identify the balance of research into the main areas of accessibility, the impact of this research, and how the research profile varies over time and across geographical regions. Method: All UAIS papers indexed in Scopus were analysed using bibliometric methods. The WCAG taxonomy of accessibility was used for the analysis, namely perceivable, operable, and understandable. Results: The results confirm the expectation that research into visual impairment has received more attention than papers addressing operable and understandable. Although papers focussing on understandable made up the smallest group, papers in this group attracted more citations. Funded research attracted fewer citations than research without funding. The breakdown of research efforts appears consistent over time and across different geographical regions. Researchers in Europe and North America have been active throughout the last two decades, while Southeast Asia, Latin America, and Middle East became active in during the last five years. There is also seemingly a growing trend of out-of-scope papers. Conclusions: Based on the findings, several recommendations are proposed to the UAIS editorial board.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yury A. Rossikhin ◽  
Marina V. Shitikova ◽  
Phan Thanh Trung

In the present paper, the problem on impact of a viscoelastic sphere against a viscoelastic plate is considered with due account for the extension of plate’s middle surface and local bearing of sphere and plate’s materials via the Hertz theory. The standard linear solid models with conventional derivatives and with fractional-order derivatives are used as viscoelastic models, respectively, outside and within the contact domain. As a result of impact, transient waves (surfaces of strong discontinuity) are generated in the plate, behind the wave fronts of which up to the boundaries of the contact domain the solution is constructed in terms of one-term ray expansions due to short-time duration of the impact process. The motion of the contact zone occurs under the action of extension forces acting in the plate’s middle surface, transverse force, and the Hertzian contact force. The suggested approach allows one to find the time-dependence of the impactor’s indentation into the target and the Hertzian contact force.


2015 ◽  
Vol 28 (9) ◽  
pp. 3834-3845 ◽  
Author(s):  
Thomas L. Delworth ◽  
Fanrong Zeng ◽  
Anthony Rosati ◽  
Gabriel A. Vecchi ◽  
Andrew T. Wittenberg

Abstract Portions of western North America have experienced prolonged drought over the last decade. This drought has occurred at the same time as the global warming hiatus—a decadal period with little increase in global mean surface temperature. Climate models and observational analyses are used to clarify the dual role of recent tropical Pacific changes in driving both the global warming hiatus and North American drought. When observed tropical Pacific wind stress anomalies are inserted into coupled models, the simulations produce persistent negative sea surface temperature anomalies in the eastern tropical Pacific, a hiatus in global warming, and drought over North America driven by SST-induced atmospheric circulation anomalies. In the simulations herein the tropical wind anomalies account for 92% of the simulated North American drought during the recent decade, with 8% from anthropogenic radiative forcing changes. This suggests that anthropogenic radiative forcing is not the dominant driver of the current drought, unless the wind changes themselves are driven by anthropogenic radiative forcing. The anomalous tropical winds could also originate from coupled interactions in the tropical Pacific or from forcing outside the tropical Pacific. The model experiments suggest that if the tropical winds were to return to climatological conditions, then the recent tendency toward North American drought would diminish. Alternatively, if the anomalous tropical winds were to persist, then the impact on North American drought would continue; however, the impact of the enhanced Pacific easterlies on global temperature diminishes after a decade or two due to a surface reemergence of warmer water that was initially subducted into the ocean interior.


2016 ◽  
Vol 35 (3) ◽  
pp. 358-370 ◽  
Author(s):  
Paul Hanlon ◽  
Gregory P. Brorby ◽  
Mansi Krishan

Processing (eg, cooking, grinding, drying) has changed the composition of food throughout the course of human history; however, awareness of process-formed compounds, and the potential need to mitigate exposure to those compounds, is a relatively recent phenomenon. In May 2015, the North American Branch of the International Life Sciences Institute (ILSI North America) Technical Committee on Food and Chemical Safety held a workshop on the risk-based process for mitigation of process-formed compounds. This workshop aimed to gain alignment from academia, government, and industry on a risk-based process for proactively assessing the need for and benefit of mitigation of process-formed compounds, including criteria to objectively assess the impact of mitigation as well as research needed to support this process. Workshop participants provided real-time feedback on a draft framework in the form of a decision tree developed by the ILSI North America Technical Committee on Food and Chemical Safety to a panel of experts, and they discussed the importance of communicating the value of such a process to the larger scientific community and, ultimately, the public. The outcome of the workshop was a decision tree that can be used by the scientific community and could form the basis of a global approach to assessing the risks associated with mitigation of process-formed compounds.


1997 ◽  
Vol 71 (6) ◽  
pp. 1109-1124 ◽  
Author(s):  
Li Guo-Qing ◽  
Mark V. H. Wilson ◽  
Lance Grande

Review of recently collected material of Eohiodon from North America suggests that there are two valid species, E. rosei (Hussakof) and E. woodroffi Wilson. Eohiodon falcatus Grande is identical to E. woodruffi in known skeletal features and nearly all meristic features and is treated as a junior synonym of the latter. The fossil genus Eohiodon Cavender differs from Hiodon Lesueur, which is known from both fossil and extant species, in numerous meristic and osteological features. The caudal skeleton in Eohiodon is nearly identical to that in Hiodon.The traditionally accepted Notopteroidei, containing Lycopteridae, Hiodontidae, and Notopteridae, is a polypheletic group. The Asian fossil family Lycopteridae is not more closely related to Hiodontidae than it is to other taxa in the Osteoglossomorpha, but is sister to all other Osteoglossomorpha. The Hiodontiformes sensu stricto, including only the family Hiodontidae, is the sister-group of the Osteoglossiformes. This family is not more closely related to notopterids than to other taxa in Osteoglossiformes. The Notopteridae are most closely related to the Mormyroidea; together they and the fossil family Ostariostomidae constitute the sister-group of the Osteoglossoidei.Fossil records of Hiodontiformes sensu stricto and Notopteroidei indicate a widespread pre-Neogene biogeographic range of these freshwater teleosts, suggesting that extinction must have been involved in the Cenozoic evolution of these two osteoglossomorph sublineages.


2008 ◽  
Vol 87 (4) ◽  
pp. 359-361 ◽  
Author(s):  
T. van der Hammen ◽  
B. van Geel

AbstractDuring the warm Bølling-Allerød interstadial, tree species migrated from their refugia in southern Europe northwards into the area within the present temperate climatic zone. It is evident from high levels of charcoal in fossil records in this region that, especially during the later part of the Bølling-Allerød interstadial, many fires occurred. The start of the Younger Dryas was characterised by rapid and intense cooling and rising water tables, with catastrophic effects on the vegetation. Thermophilous pine trees could not survive the cold Younger Dryas climate. Dead wood provided an abundant source of fuel for intense, large-scale fires seen in many records as a concentration of charcoal particles in so-called ’Usselo-soils’ dated to ca 10,95014C BP. A similar trend in increased charcoal indicating increased burning is seen at many sites across North America at this time and it has been suggested by Firestone et al. (2007) that this was caused by an explosion of extra-terrestrial material over northern North America, causing the Younger Dryas climate cooling and Megafaunal extinction. We argue that there is no need to invoke an extraterrestrial cause to explain the charcoal in the fossilized soils. The volume of forest trees that died as a result of the cold Younger Dryas climate would easily have supplied sufficient fuel for intense, large-scale fires and can be used to account for the concentration of charcoal particles. As soils were no longer covered by dense vegetation, much erosion occurred during the Younger Dryas and therefore, at many places, Usselo soils, rich in charcoal, were preserved under aeolian sand dunes.


Sign in / Sign up

Export Citation Format

Share Document