scholarly journals The neurodevelopmental basis of humor appreciation: A fNIRS study of young children

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259422
Author(s):  
Naama Mayseless ◽  
Allan L. Reiss

Humor is crucial for social development. Despite this, very few studies have examined the neurodevelopment of humor in very young children, and none to date have used functional near-infrared spectroscopy (fNIRS) to study this important cognitive construct. The main aim of the current study was to characterize the neural basis of humor processing in young children between the ages of 6–8 years. Thirty-five healthy children (6–8 years old) watched funny and neutral video clips while undergoing fNIRS imaging. We observed activation increases in left temporo-occipito-parietal junction (TOPJ), inferior-parietal lobe (IPL), dorsolateral-prefrontal cortex (DLPFC) and right inferior frontal gyrus (IFG) and superior parietal lobe (SPL) regions. Activation in left TOPJ was positively correlated with age. In addition, we found that coherence increased in humor viewing compared to neutral content, mainly between remote regions. This effect was different for boys and girls, as boys showed a more pronounced increase in coherence for funny compared to neutral videos, more so in frontoparietal networks. These results expand our understanding of the neurodevelopment of humor by highlighting the effect of age on the neural basis of humor appreciation as well as emphasizing different developmental trajectories of boys and girls.

2021 ◽  
Vol 11 (2) ◽  
pp. 196
Author(s):  
Sébastien Laurent ◽  
Laurence Paire-Ficout ◽  
Jean-Michel Boucheix ◽  
Stéphane Argon ◽  
Antonio Hidalgo-Muñoz

The question of the possible impact of deafness on temporal processing remains unanswered. Different findings, based on behavioral measures, show contradictory results. The goal of the present study is to analyze the brain activity underlying time estimation by using functional near infrared spectroscopy (fNIRS) techniques, which allow examination of the frontal, central and occipital cortical areas. A total of 37 participants (19 deaf) were recruited. The experimental task involved processing a road scene to determine whether the driver had time to safely execute a driving task, such as overtaking. The road scenes were presented in animated format, or in sequences of 3 static images showing the beginning, mid-point, and end of a situation. The latter presentation required a clocking mechanism to estimate the time between the samples to evaluate vehicle speed. The results show greater frontal region activity in deaf people, which suggests that more cognitive effort is needed to process these scenes. The central region, which is involved in clocking according to several studies, is particularly activated by the static presentation in deaf people during the estimation of time lapses. Exploration of the occipital region yielded no conclusive results. Our results on the frontal and central regions encourage further study of the neural basis of time processing and its links with auditory capacity.


Children ◽  
2020 ◽  
Vol 7 (11) ◽  
pp. 219
Author(s):  
Laura Bell ◽  
Z. Ellen Peng ◽  
Florian Pausch ◽  
Vanessa Reindl ◽  
Christiane Neuschaefer-Rube ◽  
...  

The integration of virtual acoustic environments (VAEs) with functional near-infrared spectroscopy (fNIRS) offers novel avenues to investigate behavioral and neural processes of speech-in-noise (SIN) comprehension in complex auditory scenes. Particularly in children with hearing aids (HAs), the combined application might offer new insights into the neural mechanism of SIN perception in simulated real-life acoustic scenarios. Here, we present first pilot data from six children with normal hearing (NH) and three children with bilateral HAs to explore the potential applicability of this novel approach. Children with NH received a speech recognition benefit from low room reverberation and target-distractors’ spatial separation, particularly when the pitch of the target and the distractors was similar. On the neural level, the left inferior frontal gyrus appeared to support SIN comprehension during effortful listening. Children with HAs showed decreased SIN perception across conditions. The VAE-fNIRS approach is critically compared to traditional SIN assessments. Although the current study shows that feasibility still needs to be improved, the combined application potentially offers a promising tool to investigate novel research questions in simulated real-life listening. Future modified VAE-fNIRS applications are warranted to replicate the current findings and to validate its application in research and clinical settings.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hiroyuki Kanzaki ◽  
Satoshi Wada ◽  
Masao Kumazawa ◽  
Yuko Yamada ◽  
Tomomi Sudo ◽  
...  

AbstractMastication is closely related to brain function. Animal experiments have revealed that tooth loss has a negative influence on brain function. Clinical studies also suggest that normal occlusion is an essential factor for favorable brain function. Mandibular prognathism (MP) usually results in occlusal dysfunction. However, the relationship between MP and brain function remains unclear. In the present study, we examined the relationship between MP and brain function by measuring brain blood flow (BBF). Seventeen subjects with normal occlusion (NORM) and 25 patients with MP participated in this study. The number of occlusal contacts were counted. Electromyography of the masseter muscles during clenching was also recorded. BBF was measured with non-invasive functional near-infrared spectroscopy during calculation task and chewing task. The number of the occlusal contacts and masseter muscle activity were lower in MP compared with NORM. The calculation task increased BBF in both groups. The chewing task also increased BBF in the inferior frontal gyrus in both groups, although the increase in MP was smaller than in NORM. We discovered that patients with MP exhibited a smaller increase in BBF at the inferior frontal gyrus during chewing as compared with NORM. As such, MP would negatively affect brain function.


2019 ◽  
Vol 24 (4) ◽  
pp. 729-739 ◽  
Author(s):  
Yusuke Moriguchi ◽  
Kanda Lertladaluck

Aims and objectives: Bilingual children constantly experience spontaneous switching between languages in everyday settings, and some researchers suggest that this experience leads to an advantage in task performance during executive function tasks. Neural processing during executive function tasks remains largely unknown, especially in young bilingual children. Methodology: Using functional near-infrared spectroscopy, this study examined whether young children who attended an immersion second-language program demonstrated enhanced cognitive shifting and lateral prefrontal activation. Data and analysis: We recruited children ( N = 24) who attended an international nursery school, and examined whether their performance on cognitive shifting, and whether the oxygenated hemoglobin changes in the prefrontal regions during the task, were correlated with the children’s second-language verbal age and the length of time the children had been speaking the second language. Findings: Results revealed that the verbal age of the second language and the length of time speaking it were significantly correlated with behavioral performances of cognitive shifting tasks. However, they were not correlated with the activations in the lateral prefrontal regions. Originality: We examined the neural correlates of bilingual effects on cognitive shifting and prefrontal activations in young children. Implications: The results suggest that second-language experience may not be directly related to neural processing in the lateral prefrontal cortex, at least in young children.


2021 ◽  
Author(s):  
charlotte piau ◽  
Mahdi Mahmoudzadeh ◽  
Astrid Kibleur ◽  
Mircea Polosan ◽  
Olivier David ◽  
...  

Abstract Background: Reversal learning is widely used to analyze cognitive flexibility and characterize behavioral abnormalities associated with impulsivity and disinhibition. Recent studies using fMRI have focused on regions involved in reversal learning with negative and positive reinforcers. Although the frontal cortex has been consistently implicated in reversal learning, few studies have focused on whether reward and punishment may have different effects on lateral frontal structures in these tasks. Here, in eight healthy subjects, we used functional near infra-red spectroscopy (fNIRS) to characterize brain activity dynamics and differentiate the involvement of frontal structures in learning driven by reward and punishment. Results: We observed functional hemispheric asymmetries between punishment and reward processing by fNIRS following reversal of a learned rule. Moreover, the left dorsolateral prefrontal cortex (l-DLPFC) and inferior frontal gyrus (IFG) were activated under the reward condition only, whereas the orbito-frontal cortex (OFC) was significantly activated under the punishment condition, with a tendency towards activation for the right cortical hemisphere (r-DLPFC and r-IFG). Our results are compatible with the suggestion that the DLPFC is involved in the detection of contingency change. We propose a new representation for reward and punishment, with left lateralization for the reward process. Conclusions: These results provide insights into the indirect neural mechanisms of reversal learning and behavioral flexibility and confirm the use of fNIRS imaging in reversal-learning tasks as a translational strategy, particularly in subjects who cannot undergo fMRI recordings.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0254010
Author(s):  
Keya Ding ◽  
Chuanjiang Li ◽  
Huibin Jia ◽  
Mingming Zhang ◽  
Dongchuan Yu

The left-behind phenomenon, caused by parent out-migration, has become a common social issue and might lead to long-term and potential risks for children in rural areas of China. It is important to investigate the effect of social interaction on prefrontal activation of left-behind children in China because of possible effects of parent out-migration on children’s social cognition. We recruited 81 rural Chinese preschoolers aged 52–76 months (mean = 64.98 ± 6.321 months) preschoolers with three different statuses of parental out-migration (including non-, partially, and completely left-behind children). Using functional Near-Infrared Spectroscopy (fNIRS), we compared behavior and brain activation and in three groups (non-, partially-, completely-left-behind children) under two different social interaction conditions (child-teacher and child-stranger situation). Results revealed that initiating joint attention (IJA) may evoke higher brain activation than responding to joint attention (RJA) in the prefrontal cortex (PFC), especially in the case of initiating joint attention with the stranger. In addition, the activation of joint attention was positively correlated with children’s language score, cognitive flexibility, and facial expression recognition. More importantly, partially-left-behind children evoked higher brain activation in the IJA condition and presented a higher language level than completely/non-left-behind children. The current study provides insight into the neural basis of left-behind children’s development and revealed for the first time that family economic level and left-behind status may contribute to the lower social cognition.


2019 ◽  
Author(s):  
Miao Yu ◽  
Yi B. Liu ◽  
Guang Yang

AbstractThe purpose of the study was to investigate the executive control network function characteristics of interceptive and strategic sports athletes from open skill sports. In order to do so, we used a revised lateralized attention network task to measure executive control efficiency and activation related to flanker interference changes on the right frontoparietal network using functional near-infrared spectroscopy in athletes from different sport sub-categories. Strategic athletes had higher accuracy and lower flanker conflict effects on accuracy, as well as longer reaction time and stronger conflict effects under the valid cue and invalid cue conditions. This was accompanied by higher activity in the right inferior frontal gyrus. These results extend the evidence suggesting that differences among interceptive sports and strategic sports athletes are due to the former using higher velocities to solve conflicts, and the latter using higher accuracy in the same tasks. These effects are attributed to differences in the right frontoparietal network.


2019 ◽  
Vol 48 (Supplement_4) ◽  
pp. iv34-iv39
Author(s):  
Jasmine Menant ◽  
Paulo Pelicioni ◽  
Yoshiro Okubo ◽  
Colleen Canning ◽  
Daina Sturnieks ◽  
...  

Abstract Background and Aim Past research has shown that compared with healthy peers, people with Parkinson’s Disease (PD) generate poorer stepping responses and display reduced ability to adapt gait to unexpected targets and obstacles. However, the neural basis of these impairments in PD is unclear. Here, we aimed to investigate cortical activation in pre-frontal and motor areas using functional near-infrared spectroscopy (fNIRS) during stepping and gait adaptability in people with PD, compared with healthy adults. Methods Forty-four people with PD (>40 years, Hoen & Yahr stage 1-3) and 44 healthy age and sex-matched healthy adults performed three cognitively-demanding stepping tasks and a test of gait adaptability. We recorded relative changes in oxy-haemoglobin (HbO) and deoxy-haemoglobin (HbR) concentrations in the dorsolateral prefrontal cortex, supplementary motor area, premotor cortex and primary cortex using fNIRS. Results Data collection is ongoing with >75% participants already assessed. We will conduct between group-comparisons to compare HbO and HbR concentrations in the selected regions of interest in the stepping and the gait adaptability tests. Physical and cognitive predictors of brain activation in each task in each group will also be computed using regression models. Conclusion Based on the results of our recent systematic review of fNIRS-recorded brain activation during walking tasks (1), we hypothesise that compared with healthy-aged matched peers, people with PD will show increased prefrontal and motor cortices activation during stepping and gait adaptability tests. This would suggest that people with PD require more attentional resources for safe walking. Reference (1) Pelicioni et al. Prefrontal cortical activation measured by fNIRS during walking: effects of age, disease and secondary task. Peer J 2019; 7: e6833.


Sign in / Sign up

Export Citation Format

Share Document