scholarly journals Identifying knowledge important to teach about the nervous system in the context of secondary biology and science education–A Delphi study

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260752
Author(s):  
Pål Kvello ◽  
Niklas Gericke

Teaching about the nervous system has become a challenging task in secondary biology and science education because of the fast development in the field of neuroscience. A major challenge is to determine what content to teach. Curricula goals are often too general to guide instruction, and information about the nervous system has become overwhelming and diverse with ubiquitous relevance in society. In addition, several misconceptions and myths are circulating in educational communities causing world-wide confusion as to what content is correct. To help teachers, textbook authors, and curricula developers in this challenging landscape of knowledge, the aim of the present study is to identify the expert view on what knowledge is important for understanding the nervous system in the context of secondary biology and science education. To accomplish this, we have conducted a thematic content analysis of textbooks followed by a Delphi study of 15 experts in diverse but relevant fields. The results demonstrate six curriculum themes including gross anatomy and function, cell types and functional units, the nerve signal, connections between neurons, when nerve signals travel through networks of neurons, and plasticity in the nervous system, as well as 26 content principles organized in a coherent curriculum progression from general content to more specific content. Whereas some of the principles clarify and elaborate on traditional school biology knowledge, others add new knowledge to the curriculum. Importantly, the new framework for teaching about the nervous system presented here, meets the needs of society, as expressed by recent international policy frameworks of OECD and WHO, and it addresses common misconceptions about the brain. The study suggests an update of the biology and science curriculum.

2020 ◽  
Vol 3 (1) ◽  
pp. 1-11
Author(s):  
Mami Noda

AbstractGlial cells play a significant role in the link between the endocrine and nervous systems. Among hormones, thyroid hormones (THs) are critical for the regulation of development and differentiation of neurons and glial cells, and hence for development and function of the central nervous system (CNS). THs are transported into the CNS, metabolized in astrocytes and affect various cell types in the CNS including astrocyte itself. Since 3,3’,5-triiodo-L-thyronine (T3) is apparently released from astrocytes in the CNS, it is a typical example of glia-endocrine system.The prevalence of thyroid disorders increases with age. Both hypothyroidism and hyperthyroidism are reported to increase the risk of cognitive impairment or Alzheimer’s disease (AD). Therefore, understanding the neuroglial effects of THs may help to solve the problem why hypothyroidism or hyperthyroidism may cause mental disorders or become a risk factor for cognitive impairment. In this review, THs are focused among wide variety of hormones related to brain function, and recent advancement in glioendocrine system is described.


2015 ◽  
Vol 26 (4) ◽  
Author(s):  
Pavel Ostasov ◽  
Zbynek Houdek ◽  
Jan Cendelin ◽  
Milena Kralickova

AbstractLeukemia inhibitory factor (LIF) is a multifunction cytokine that has various effects on different tissues and cell types in rodents and humans; however, its insufficiency has a relatively mild impact. This could explain why only some aspects of LIF activity are in the limelight, whereas other aspects are not well known. In this review, the LIF structure, signaling pathway, and primary roles in the development and function of an organism are reviewed, and the effects of LIF on stem cell growth and differentiation, which are important for its use in cell culturing, are described. The focus is on the roles of LIF in central nervous system development and on the modulation of its physiological functions as well as the involvement of LIF in the pathogenesis of brain diseases and injuries. Finally, LIF and its signaling pathway are discussed as potential targets of therapeutic interventions to influence both negative phenomena and regenerative processes following brain injury.


1988 ◽  
Vol 69 (2) ◽  
pp. 155-170 ◽  
Author(s):  
James T. Rutka ◽  
Gerard Apodaca ◽  
Robert Stern ◽  
Mark Rosenblum

✓ The extracellular matrix (ECM) is the naturally occurring substrate upon which cells migrate, proliferate, and differentiate. The ECM functions as a biological adhesive that maintains the normal cytoarchitecture of different tissues and defines the key spatial relationships among dissimilar cell types. A loss of coordination and an alteration in the interactions between mesenchymal cells and epithelial cells separated by an ECM are thought to be fundamental steps in the development and progression of cancer. Although a substantial body of knowledge has been accumulated concerning the role of the ECM in most other tissues, much less is known of the structure and function of the ECM in the nervous system. Recent experiments in mammalian systems have shown that an increased knowledge of the ECM in the nervous system can lead to a better understanding of complex neurobiological processes under developmental, normal, and pathological conditions. This review focuses on the structure and function of the ECM in the peripheral and central nervous systems and on the importance of ECM macromolecules in axonal regeneration, cerebral edema, and cerebral neoplasia.


2002 ◽  
Vol 366 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Ward C. TUCKER ◽  
Edwin R. CHAPMAN

The Ca2+-binding synaptic-vesicle protein synaptotagmin I has attracted considerable interest as a potential Ca2+ sensor that regulates exocytosis from neurons and neuroendocrine cells. Recent studies have shed new light on the structure, biochemical/biophysical properties and function of synaptotagmin, and the emerging view is that it plays an important role in both exocytosis and endocytosis. At least a dozen additional isoforms exist, some of which are expressed outside of the nervous system, suggesting that synaptotagmins might regulate membrane traffic in a variety of cell types. Here we provide an overview of the members of this gene family, with particular emphasis on the question of whether and how synaptotagmin I functions during the final stages of membrane fusion: does it regulate the Ca2+-triggered opening and dilation of fusion pores?


Development ◽  
1993 ◽  
Vol 118 (3) ◽  
pp. 765-775 ◽  
Author(s):  
G. Udolph ◽  
A. Prokop ◽  
T. Bossing ◽  
G.M. Technau

The nervous system consists of two classes of cells, neurons and glia, which differ in morphology and function. They derive from precursors located in the neurogenic region of the ectoderm. In this study, we present the complete embryonic lineage of a neuroectodermal precursor in Drosophila that gives rise to neurons as well as glia in the abdominal CNS. This lineage is conserved among different Drosophila species. We show that neuronal and glial cell types in this clone derive from one segregating precursor, previously described as NB1-1. Thus, in addition to neuroblasts and glioblasts, there exists a third class of CNS precursors in Drosophila, which we call neuroglioblasts. We further show that the NB 1–1 lineage exhibits characteristic segment-specific differences on the cellular level.


Author(s):  
Sarah A. Neely ◽  
David A. Lyons

The term glia describes a heterogenous collection of distinct cell types that make up a large proportion of our nervous system. Although once considered the glue of the nervous system, the study of glial cells has evolved significantly in recent years, with a large body of literature now highlighting their complex and diverse roles in development and throughout life. This progress is due, in part, to advances in animal models in which the molecular and cellular mechanisms of glial cell development and function as well as neuron-glial cell interactions can be directly studied in vivo in real time, in intact neural circuits. In this review we highlight the instrumental role that zebrafish have played as a vertebrate model system for the study of glial cells, and discuss how the experimental advantages of the zebrafish lend themselves to investigate glial cell interactions and diversity. We focus in particular on recent studies that have provided insight into the formation and function of the major glial cell types in the central nervous system in zebrafish.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2507
Author(s):  
Carla Mucignat-Caretta

The brain may be affected by a variety of tumors of different grade, which originate from different cell types at distinct locations, thus impacting on the brain structure and function [...]


2021 ◽  
Vol 220 (7) ◽  
Author(s):  
Isha Ralhan ◽  
Chi-Lun Chang ◽  
Jennifer Lippincott-Schwartz ◽  
Maria S. Ioannou

Lipid droplets are dynamic intracellular lipid storage organelles that respond to the physiological state of cells. In addition to controlling cell metabolism, they play a protective role for many cellular stressors, including oxidative stress. Despite prior descriptions of lipid droplets appearing in the brain as early as a century ago, only recently has the role of lipid droplets in cells found in the brain begun to be understood. Lipid droplet functions have now been described for cells of the nervous system in the context of development, aging, and an increasing number of neuropathologies. Here, we review the basic mechanisms of lipid droplet formation, turnover, and function and discuss how these mechanisms enable lipid droplets to function in different cell types of the nervous system under healthy and pathological conditions.


STEMedicine ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. e9
Author(s):  
Cenfeng Chu ◽  
Guisheng Zhong ◽  
Hui Li

Cytoskeleton plays an essential role in many functions in different cells and has been involved in the pathogenesis of many neural diseases. With the development of super-resolution fluorescence imaging technologies, which combine the molecular specificity and simple sample preparation of fluorescence microscopy and provide a spatial resolution comparable to that of electron microscopy, numerous new features have been revealed in the cytoskeletal organization of the subcortical cytoskeleton. A novel periodic lattice cytoskeleton is prevalent in different cell types throughout the nervous system. Here, we review the current studies of the molecular distribution, developmental mechanisms, and functional properties of the periodic cytoskeleton structure.


1999 ◽  
Vol 81 (06) ◽  
pp. 951-956 ◽  
Author(s):  
J. Corral ◽  
R. González-Conejero ◽  
J. Rivera ◽  
F. Ortuño ◽  
P. Aparicio ◽  
...  

SummaryThe variability of the platelet GP Ia/IIa density has been associated with the 807 C/T polymorphism (Phe 224) of the GP Ia gene in American Caucasian population. We have investigated the genotype and allelic frequencies of this polymorphism in Spanish Caucasians. The T allele was found in 35% of the 284 blood donors analyzed. We confirmed in 159 healthy subjects a significant association between the 807 C/T polymorphism and the platelet GP Ia density. The T allele correlated with high number of GP Ia molecules on platelet surface. In addition, we observed a similar association of this polymorphism with the expression of this protein in other blood cell types. The platelet responsiveness to collagen was determined by “in vitro” analysis of the platelet activation and aggregation response. We found no significant differences in these functional platelet parameters according to the 807 C/T genotype. Finally, results from 3 case/control studies involving 302 consecutive patients (101 with coronary heart disease, 104 with cerebrovascular disease and 97 with deep venous thrombosis) determined that the 807 C/T polymorphism of the GP Ia gene does not represent a risk factor for arterial or venous thrombosis.


Sign in / Sign up

Export Citation Format

Share Document