scholarly journals Lung eosinophils elicited during allergic and acute aspergillosis express RORγt and IL-23R but do not require IL-23 for IL-17 production

2021 ◽  
Vol 17 (8) ◽  
pp. e1009891
Author(s):  
Bhawna Yadav ◽  
Charles A. Specht ◽  
Chrono K. Lee ◽  
Maria Pokrovskii ◽  
Jun R. Huh ◽  
...  

Exposure to the mold, Aspergillus, is ubiquitous and generally has no adverse consequences in immunocompetent persons. However, invasive and allergic aspergillosis can develop in immunocompromised and atopic individuals, respectively. Previously, we demonstrated that mouse lung eosinophils produce IL-17 in response to stimulation by live conidia and antigens of A. fumigatus. Here, we utilized murine models of allergic and acute pulmonary aspergillosis to determine the association of IL-23, IL-23R and RORγt with eosinophil IL-17 expression. Following A. fumigatus stimulation, a population of lung eosinophils expressed RORγt, the master transcription factor for IL-17 regulation. Eosinophil RORγt expression was demonstrated by flow cytometry, confocal microscopy, western blotting and an mCherry reporter mouse. Both nuclear and cytoplasmic localization of RORγt in eosinophils were observed, although the former predominated. A population of lung eosinophils also expressed IL-23R. While expression of IL-23R was positively correlated with expression of RORγt, expression of RORγt and IL-17 was similar when comparing lung eosinophils from A. fumigatus-challenged wild-type and IL-23p19-/- mice. Thus, in allergic and acute models of pulmonary aspergillosis, lung eosinophils express IL-17, RORγt and IL-23R. However, IL-23 is dispensable for production of IL-17 and RORγt.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3391-3391
Author(s):  
Kazuhito Naka ◽  
Takayuki Hoshii ◽  
Yuko Tadokoro ◽  
Takako Ooshio ◽  
Yukio Kondo ◽  
...  

Abstract Abstract 3391 Chronic myeloid leukemia (CML) is caused by a defined genetic abnormality that generates BCR-ABL, a constitutively active tyrosine kinase. Although the development of imatinib, a small molecule inhibitor of ABL, represents a breakthrough in the treatment of CML, major part of patients treated in chronic phase CML are not off therapy due to resistance or intolerance. Recent studies have suggested that imatinib is a potent inhibitor against differentiated leukemia cells, but does not deplete leukemia-initiating cells (LICs) responsible for recurrence of CML. To date, therapeutics that can eradicate CML LICs, however, have remained under investigation. To overcome these clinical problems, here we studied the molecular mechanisms regulating maintenance of imatinib-resistant CML LICs by forkhead transcription factor Foxo3a. We first generated a mouse CML model by using retroviral induction of BCR-ABL-ires-GFP gene into mouse immature hematopoietic cells, and the cells were subsequently transplanted into irradiated recipient mice. These experiments showed that CML LICs were highly enriched in c-Kit+Lin−Sca-1+ (KLS+) population in BCR-ABL+ CML cells. Serial transplantation experiments for CML LICs originated from Foxo3a-deficient mice and littermate wild-type mice indicated that Foxo3a-deficiency reduced lethality of recipient mice at third transplantation. Although recipients that transplanted with wild-type LICs developed CML and acute lymphocytic leukemia (ALL) at third transplantation, we did not observe development of ALL or CML in recipients of Foxo3a deficient LICs after 45 days post-third transplantation, suggesting that the Foxo3a deficient LICs lose their potential to generate malignancies. In addition, a combination of Foxo3a deficiency and imatinib treatment led to efficient depletion of CML in vivo, indicating that Foxo3a plays an essential role for the maintenance of imatinib-resistant CML LICs (Naka et al., Nature 463, 676–680, 2010). Interestingly, when we examined sub-cellular localization of Foxo3a transcription factor in the CML LICs, we found two CML LIC populations; one population was the cells with nuclear localization of Foxo3a (Foxo3a transcription factor is active) and the other population was the cells with cytoplasmic localization of Foxo3a (Foxo3a is inactive). To understand the molecular mechanisms regulating Foxo3a in CML LICs, we next evaluated the activity of upstream BCR-ABL, PI3K, PDK1, and Akt signaling pathway by fluorescence immunohistochemistry. BCR-ABL activity that was determined by phosphorylation levels of CrkL, a down-stream target of BCR-ABL, was detected in almost all of the CML LICs. However, unexpectedly, phosphorylation levels of Akt in the CML LICs with nuclear localization of Foxo3a appeared to be lower than that in the CML LICs with cytoplasmic localization of Foxo3a, despite it is widely believed that BCR-ABL induces activation of Akt signal. Consistent with Akt phosphorylation status, we detected low levels phosphorylation of PDK1 and PI3K p85, upstream regulators for Akt, in the CML LICs with nuclear localization of Foxo3a. Interestingly, expression levels of the cell proliferation antigen Ki67 were lower in the CML LICs with nuclear Foxo3a than that in the CML LICs with cytoplasmic Foxo3a. These results suggest that Foxo3a responsible for maintenance of imatinib-resistant CML LICs may be regulated by molecular mechanisms that are involved in dormancy in CML LICs. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Jesse Eernstman ◽  
Barbera Veldhuisen ◽  
Peter Ligthart ◽  
Marieke von Lindern ◽  
Ellen van der Schoot ◽  
...  

Abstract Beta-hemoglobinopathies become prominent after birth due to a switch from γ-globin to the mutated β-globin. Haploinsufficiency for the erythroid specific indispensable transcription factor Krueppel-like factor 1 (KLF1) is associated with high persistence of fetal hemoglobin (HPFH). The In(Lu) phenotype, characterized by low to undetectable Lutheran blood group expression is caused by mutations within KLF1 gene. These KLF1 variants often lead to KLF1 haploinsufficiency. We screened a donor cohort of 55 Lutheran weak or negative donors for KLF1 variants. To discriminate between weak and negative Lutheran expression, a flow cytometry (FCM) assay was developed to detect Lu polymorphisms. The Lu(a-b-) (negative) donor group, showing a significant decreased CD44 (Indian blood group) expression, also showed increased HbF and HbA2 levels, with outliers expressing >5% HbF. KLF1 exons and promoter sequencing revealed variants in 80% of the Lutheran negative donors. Thirteen different variants plus one high frequency SNP (c.304T>C) were identified of which 6 were novel. In primary erythroblasts, knockdown of endogenous KLF1 resulted in decreased CD44, Lu and increased HbF expression, while KLF1 over-expressing cells were comparable to wild type (WT). In line with the pleiotropic effects of KLF1 during erythropoiesis, distinct KLF1 mutants expressed in erythroblasts display different abilities to rescue CD44 and Lu expression and/or to affect fetal (HbF) or adult (HbA) hemoglobin expression.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5205-5205
Author(s):  
Julia Bauer ◽  
Nadine Sandhöfer ◽  
Wolfgang Hiddemann ◽  
Karsten Spiekermann

Abstract Background The FMS-like tyrosine kinase-3 (FLT3) gene encodes for a receptor tyrosine kinase playing an important role in hematopoiesis. In acute leukemias it is one of the most frequently mutated genes. In this study we functionally characterized a novel frameshift deletion mutation of FLT3 found in a relapsed patient with acute myeloid leukemia (AML). The frameshift leads to a premature stop codon resulting in a truncated form of the receptor lacking most of the intracellular domains. Material and Methods FLT3 cDNA was expressed in the IL-3 dependent pro-B cell line Ba/F3 via a retroviral expression vector. The transduced cell lines were sorted by fluorescence-activated cell sorting (FACS). Stable expression of the receptor was confirmed on mRNA level by polymerase chain reaction (PCR) and on protein level by western blotting and cell surface expression of the receptor by flow cytometry. Cell proliferation assays were performed in presence or absence of IL-3 or FLT3-ligand. By western blotting receptor activation and its downstream signaling were analyzed. Ligand-binding of the receptor was shown via biotinylated and fluorescent FLT3-ligand-receptor-complexes by flow cytometry. Results and Discussion Stable expression of FLT3 Q569Vstop does not enable Ba/F3 cells to grow IL-3-independent. FLT3-ligand can still be bound by the mutated receptor but is not able to stimulate receptors´ signaling and growth of the cells. Furthermore coexpression of wild-type (WT) and mutant FLT3 receptor also abolishes the ability to stimulate the WT receptor with its ligand. This is confirmed by analyzing downstream signaling in the cells as MAPK is less phosphorylated in the FLT3-WT/Q569Vstop coexpressing cells than in FLT3-WT expressing cells alone. Conclusion Most of the FLT3 mutations are activating mutations leading to a constitutive activation of the receptor and ligand-independent growth. In our study we characterized a novel FLT3 mutation found in an AML patient which has not been described before. The resulting truncated receptor is still integrated in the plasma membrane and binds its ligand but its ability to be fully activated is completely lost. Furthermore coexpressed with a FLT3-WT receptor, it even prevents stimulation and activation of the WT receptor, thus acting in a dominant negative manner. How the truncated form of the receptor contributes to progression of acute leukemia is of great interest and will be further investigated. Disclosures No relevant conflicts of interest to declare.


1999 ◽  
Vol 147 (2) ◽  
pp. 235-246 ◽  
Author(s):  
Anton A. Titov ◽  
Günter Blobel

We discovered a nuclear import pathway mediated by the product of the previously identified Saccharomyces cerevisiae gene PDR6 (pleiotropic drug resistance). This gene product functions as a karyopherin (Kap) for nuclear import. Consistent with previously proposed nomenclature, we have renamed this gene KAP122. Kap122p was localized both to the cytoplasm and the nucleus. As a prominent import substrate of Kap122p, we identified the complex of the large and small subunit (Toa1p and Toa2p, respectively) of the general transcription factor IIA (TFIIA). Recombinant GST-Kap122p formed a complex with recombinant His6-Toa1p/Toa2p. In wild-type cells, Toa1p and Toa2p were localized to the nucleus. Consistent with Kap122p being the principal Kap for import of the Toa1p–Toa2p complex, we found that deletion of KAP122 results in increased cytoplasmic localization of both Toa1p and Toa2p. Deletion of KAP122 is not lethal, although deletion of TOA1 and TOA2 is. Together these data suggest that Kap122p is the major Kap for the import of Toa1p–Toa2p into the nucleus. Like other substrate–Kap complexes, the Toa1p/Toa2p/Kap122p complex isolated from yeast cytosol or reconstituted from recombinant proteins, was dissociated by RanGTP but not RanGDP. Kap122p bound to nucleoporins, specifically, to the peptide repeat–containing fragments of Nup1p and Nup2p.


Pneumologie ◽  
2012 ◽  
Vol 66 (11) ◽  
Author(s):  
K Hoehne ◽  
H Eibel ◽  
M Grimm ◽  
M Idzko ◽  
J Müller-Quernheim ◽  
...  

1997 ◽  
Vol 35 (11-12) ◽  
pp. 451-453
Author(s):  
F. X. Abad ◽  
A. Bosch ◽  
J. Comas ◽  
D. Villalba ◽  
R. M. Pintó

A method has been developed for the detection of infectious human rotavirus (HRV), based on infection of MA104 and CaCo-2 cell monolayers and ulterior flow cytometry. The sensitivity of the flow cytometry procedure for the cell-adapted HRV enabled the detection of 200 and 2 MPNCU in MA104 and CaCo-2 cells, respectively. Flow cytometry performed five days after infection of CaCo-2 enabled the detection of naturally occurring wild-type HRV in faecal samples and concentrated water samples.


2021 ◽  
Vol 22 (4) ◽  
pp. 2141
Author(s):  
Srinu Tumpara ◽  
Elena Korenbaum ◽  
Mark Kühnel ◽  
Danny Jonigk ◽  
Beata Olejnicka ◽  
...  

The C-terminal-fragments of alpha1-antitrypsin (AAT) have been identified and their diverse biological roles have been reported in vitro and in vivo. These findings prompted us to develop a monoclonal antibody that specifically recognizes C-36 peptide (corresponding to residues 359–394) resulting from the protease-associated cleavage of AAT. The C-36-targeting mouse monoclonal Immunoglobulin M (IgM) antibody (containing κ light chains, clone C42) was generated and enzyme-linked immunosorbent assay (ELISA)-tested by Davids Biotechnologie GmbH, Germany. Here, we addressed the effectiveness of the novel C42 antibody in different immunoassay formats, such as dot- and Western blotting, confocal laser microscopy, and flow cytometry. According to the dot-blot results, our novel C42 antibody detects the C-36 peptide at a range of 0.1–0.05 µg and shows no cross-reactivity with native, polymerized, or oxidized forms of full-length AAT, the AAT-elastase complex mixture, as well as with shorter C-terminal fragments of AAT. However, the C42 antibody does not detect denatured peptide in SDS-PAGE/Western blotting assays. On the other hand, our C42 antibody, unconjugated as well as conjugated to DyLight488 fluorophore, when applied for immunofluorescence microscopy and flow cytometry assays, specifically detected the C-36 peptide in human blood cells. Altogether, we demonstrate that our novel C42 antibody successfully recognizes the C-36 peptide of AAT in a number of immunoassays and has potential to become an important tool in AAT-related studies.


Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1573-1581 ◽  
Author(s):  
Susanna Chou ◽  
Sukalyan Chatterjee ◽  
Mark Lee ◽  
Kevin Struhl

Abstract The general transcription factor IIA (TFIIA) forms a complex with TFIID at the TATA promoter element, and it inhibits the function of several negative regulators of the TATA-binding protein (TBP) subunit of TFIID. Biochemical experiments suggest that TFIIA is important in the response to transcriptional activators because activation domains can interact with TFIIA, increase recruitment of TFIID and TFIIA to the promoter, and promote isomerization of the TFIID-TFIIA-TATA complex. Here, we describe a double-shut-off approach to deplete yeast cells of Toa1, the large subunit of TFIIA, to <1% of the wild-type level. Interestingly, such TFIIA-depleted cells are essentially unaffected for activation by heat shock factor, Ace1, and Gal4-VP16. However, depletion of TFIIA causes a general two- to threefold decrease of transcription from most yeast promoters and a specific cell-cycle arrest at the G2-M boundary. These results indicate that transcriptional activation in vivo can occur in the absence of TFIIA.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haiwei Wang ◽  
Xinrui Wang ◽  
Liangpu Xu ◽  
Ji Zhang ◽  
Hua Cao

AbstractBased on isocitrate dehydrogenase (IDH) alterations, lower grade glioma (LGG) is divided into IDH mutant and wild type subgroups. However, the further classification of IDH wild type LGG was unclear. Here, IDH wild type LGG patients in The Cancer Genome Atlas and Chinese Glioma Genome Atlas were divided into two sub-clusters using non-negative matrix factorization. IDH wild type LGG patients in sub-cluster2 had prolonged overall survival and low frequency of CDKN2A alterations and low immune infiltrations. Differentially expressed genes in sub-cluster1 were positively correlated with RUNX1 transcription factor. Moreover, IDH wild type LGG patients with higher stromal score or immune score were positively correlated with RUNX1 transcription factor. RUNX1 and its target gene REXO2 were up-regulated in sub-cluster1 and associated with the worse prognosis of IDH wild type LGG. RUNX1 and REXO2 were associated with the higher immune infiltrations. Furthermore, RUNX1 and REXO2 were correlated with the worse prognosis of LGG or glioma. IDH wild type LGG in sub-cluster2 was hyper-methylated. REXO2 hyper-methylation was associated with the favorable prognosis of LGG or glioma. At last, we showed that, age, tumor grade and REXO2 expression were independent prognostic factors in IDH wild type LGG.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Ian Edward Gentle ◽  
Isabel Moelter ◽  
Mohamed Tarek Badr ◽  
Konstanze Döhner ◽  
Michael Lübbert ◽  
...  

AbstractMutations in the transcription factor C/EBPα are found in ~10% of all acute myeloid leukaemia (AML) cases but the contribution of these mutations to leukemogenesis is incompletely understood. We here use a mouse model of granulocyte progenitors expressing conditionally active HoxB8 to assess the cell biological and molecular activity of C/EBPα-mutations associated with human AML. Both N-terminal truncation and C-terminal AML-associated mutations of C/EBPα substantially altered differentiation of progenitors into mature neutrophils in cell culture. Closer analysis of the C/EBPα-K313-duplication showed expansion and prolonged survival of mutant C/EBPα-expressing granulocytes following adoptive transfer into mice. C/EBPα-protein containing the K313-mutation further showed strongly enhanced transcriptional activity compared with the wild-type protein at certain promoters. Analysis of differentially regulated genes in cells overexpressing C/EBPα-K313 indicates a strong correlation with genes regulated by C/EBPα. Analysis of transcription factor enrichment in the differentially regulated genes indicated a strong reliance of SPI1/PU.1, suggesting that despite reduced DNA binding, C/EBPα-K313 is active in regulating target gene expression and acts largely through a network of other transcription factors. Strikingly, the K313 mutation caused strongly elevated expression of C/EBPα-protein, which could also be seen in primary K313 mutated AML blasts, explaining the enhanced C/EBPα activity in K313-expressing cells.


Sign in / Sign up

Export Citation Format

Share Document