scholarly journals Association of Serum Carotenoids and Tocopherols with γ-Glutamyltransferase: The Cardiovascular Risk Development in Young Adults (CARDIA) Study

2004 ◽  
Vol 50 (3) ◽  
pp. 582-588 ◽  
Author(s):  
Duk-Hee Lee ◽  
Myron D Gross ◽  
David R Jacobs

Abstract Background: Our previous studies suggest that serum γ-glutamyltransferase (GGT) activity may be related to oxidative stress, supporting findings of experimental studies. To further examine the role of GGT in relation to oxidative stress, we investigated the association between serum carotenoids and tocopherols, which have antioxidant properties, and serum GGT. Methods: Study participants were 3128 black and white men and women 17–35 years of age in 1985–1986. Serum carotenoids and tocopherols were measured at years 0 and 7, and serum GGT was measured at years 0 and 10. Results: Circulating concentrations of α-carotene, β-carotene, and β-cryptoxanthin inversely predicted the serum GGT concentration measured 10 years later in a dose–response manner (P for trend <0.01). Year 0 zeaxanthin/lutein was weakly inversely associated with year 10 GGT (P for trend = 0.08), and year 0 lycopene was unrelated to year 10 GGT. Adjusted geometric means of serum GGT at year 10 according to quintile of the sum of four carotenoids at year 0 (α-carotene, β-carotene, β-cryptoxanthin, and zeaxanthin/lutein) were 19.9, 19.4, 18.9, 17.8, and 17.3 U/L (P for trend <0.01). Year 0 α-tocopherol was also a significant inverse predictor of year 10 serum GGT concentration (P for trend = 0.03), whereas γ-tocopherol showed an inconsistent or possibly U-shaped association. However, year 0 serum GGT did not predict serum antioxidants measured 7 years later. Conclusion: Our present findings support the contention that serum GGT concentration is a marker related with oxidative stress.

2020 ◽  
Vol 26 (30) ◽  
pp. 3667-3675 ◽  
Author(s):  
Camila Cruz Pereira Almenara ◽  
Thiago F. Oliveira ◽  
Alessandra S. Padilha

Background: Cadmium is a worldwide spread toxicant that accumulates in tissues and affects many organs, mainly through oxidative damage. Oxidative stress is often associated with cardiovascular diseases and, when it affects vessels, it induces endothelial dysfunction, which, in turn, could precipitate atherosclerosis and hypertension. Therefore, it is reasonable to suggest antioxidant supplementation as a therapy against cadmiuminduced endothelial dysfunction. Objective: This literature review aims to present the mechanisms involving oxidative stress in which cadmium induces endothelial dysfunction and the benefits of antioxidant supplementation as a therapeutic strategy against its harmful effects. Methods: On PubMed Central, articles that contemplated studies on cadmium intoxication and associated oxidative stress with endothelial dysfunction as well as articles that reported the use of antioxidant supplementation in an attempt to prevent or avoid endothelial dysfunction induced by cadmium exposure were selected. Results: Most of the studies that associated cadmium intoxication with endothelial dysfunction suggested oxidative stress as the major mechanism for this damage. Furthermore, experimental studies also revealed that the administration of substances with antioxidant properties, such as ascorbic acid and curcumin, has beneficial effects on the prevention of such dysfunction, reducing reactive oxygen species within the vessels, preventing a reduction in the amount of glutathione and the increase in blood pressure observed in animals exposed to cadmium. Conclusion: Antioxidant therapy demonstrated to be a potential treatment to reduce cardiovascular injuries provoked by cadmium, but more studies are needed to determine the best antioxidant substance and dose to treat or avoid this complication.


2003 ◽  
Vol 49 (8) ◽  
pp. 1358-1366 ◽  
Author(s):  
Duk-Hee Lee ◽  
David R Jacobs ◽  
Myron Gross ◽  
Catarina I Kiefe ◽  
Jeffrey Roseman ◽  
...  

Abstract Background: γ-Glutamyltransferase (GGT), which maintains cellular concentrations of glutathione, may be a marker of oxidative stress, and GGT itself may produce oxidative stress. We performed a prospective study to examine whether serum GGT predicts diabetes and hypertension. Methods: Study participants were 4844 black and white men and women 18–30 years of age in 1985–1986; they were reexamined 2, 5, 7, 10, and 15 years later. Year 0 GGT cutpoints were 12, 17, 25, and 36 U/L (overall 25th, 50th, 75th, and 90th percentiles; the laboratory cutpoints for abnormal are 40 U/L in women and 50 U/L in men). We deleted 32 participants with prevalent diabetes and 140 participants with prevalent hypertension from the respective incidence analyses. Results: After adjustment for study center, race, sex, and age in proportional hazards regression, the hazard ratios across year 0 GGT categories were 1.0, 1.6, 1.7, 4.0 (95% confidence interval, 2.0–8.1), and 5.5 (2.7–11.1) for 15-year incident diabetes and 1.0, 1.2, 1.7 (1.2–2.2), 2.3 (1.7–3.2), and 2.3 (1.7–3.2) for hypertension. Additional adjustment for year 0 alcohol consumption, body mass index, cigarette smoking, and physical activity attenuated this relationship, but GGT remained a significant predictor. Conclusions: Serum GGT within a range regarded as physiologically normal is associated with incident diabetes and hypertension. Considering known functionality of GGT, these associations are consistent with a role for oxidative stress in risk for diabetes and hypertension.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 160
Author(s):  
Vladana Domazetovic ◽  
Irene Falsetti ◽  
Caterina Viglianisi ◽  
Kristian Vasa ◽  
Cinzia Aurilia ◽  
...  

Vitamin E, a fat-soluble compound, possesses both antioxidant and non-antioxidant properties. In this study we evaluated, in intestinal HT29 cells, the role of natural tocopherols, α-Toc and δ-Toc, and two semi-synthetic derivatives, namely bis-δ-Toc sulfide (δ-Toc)2S and bis-δ-Toc disulfide (δ-Toc)2S2, on TNFα-induced oxidative stress, and intercellular adhesion molecule-1 (ICAM-1) and claudin-2 (Cl-2) expression. The role of tocopherols was compared to that of N-acetylcysteine (NAC), an antioxidant precursor of glutathione synthesis. The results show that all tocopherol containing derivatives used, prevented TNFα-induced oxidative stress and the increase of ICAM-1 and Cl-2 expression, and that (δ-Toc)2S and (δ-Toc)2S2 are more effective than δ-Toc and α-Toc. The beneficial effects demonstrated were due to tocopherol antioxidant properties, but suppression of TNFα-induced Cl-2 expression seems not only to be related with antioxidant ability. Indeed, while ICAM-1 expression is strongly related to the intracellular redox state, Cl-2 expression is TNFα-up-regulated by both redox and non-redox dependent mechanisms. Since ICAM-1 and Cl-2 increase intestinal bowel diseases, and cause excessive recruitment of immune cells and alteration of the intestinal barrier, natural and, above all, semi-synthetic tocopherols may have a potential role as a therapeutic support against intestinal chronic inflammation, in which TNFα represents an important proinflammatory mediator.


2021 ◽  
pp. 1-82
Author(s):  
Joseph Cesario

Abstract This article questions the widespread use of experimental social psychology to understand real-world group disparities. Standard experimental practice is to design studies in which participants make judgments of targets who vary only on the social categories to which they belong. This is typically done under simplified decision landscapes and with untrained decision makers. For example, to understand racial disparities in police shootings, researchers show pictures of armed and unarmed Black and White men to undergraduates and have them press "shoot" and "don't shoot" buttons. Having demonstrated categorical bias under these conditions, researchers then use such findings to claim that real-world disparities are also due to decision-maker bias. I describe three flaws inherent in this approach, flaws which undermine any direct contribution of experimental studies to explaining group disparities. First, the decision landscapes used in experimental studies lack crucial components present in actual decisions (Missing Information Flaw). Second, categorical effects in experimental studies are not interpreted in light of other effects on outcomes, including behavioral differences across groups (Missing Forces Flaw). Third, there is no systematic testing of whether the contingencies required to produce experimental effects are present in real-world decisions (Missing Contingencies Flaw). I apply this analysis to three research topics to illustrate the scope of the problem. I discuss how this research tradition has skewed our understanding of the human mind within and beyond the discipline and how results from experimental studies of bias are generally misunderstood. I conclude by arguing that the current research tradition should be abandoned.


2019 ◽  
Vol 41 (5) ◽  
pp. 859-859
Author(s):  
Erum Shireen Erum Shireen ◽  
Wafa Binte Ali Wafa Binte Ali ◽  
Maria Masroor Maria Masroor ◽  
Saeeda Bano Saeeda Bano ◽  
Samina Iqbal Samina Iqbal ◽  
...  

Acute exposure to stress is connected to many disorders that promote the toxicity of oxygen radical generators leading to increase in the levels of enzymes and also the activation of the HPA axis. The present study uses a preclinical approach to elucidate some prospective stress-induced behavioral and biochemical effects. The aim of current study was to investigate the relationship between stress and behavioral changes after exposing animals to 2h immobilization stress. We also evaluated the concentration of corticosterone, glucose and endogenous leptin levels in unstressed and stressed animals to explore the possible role of HPA axis in the modulation of stressed induced behavioral deficits. Rats were divided into stressed and unstressed groups. Behavioral activities were monitored in open field activity and light dark transition box after the termination of 2h immobilization period. Animals were then decapitated and plasma samples were collected for catalase, SOD, corticosterone, and glucose estimation. Results showed that exposure to acute stress produced a significant decrease in the activity of rats in the novel environment (open field) and light dark transition box. On the other hand, concomitant elevated level of peripheral markers of oxidative stress such as oxidative enzymes, corticosterone and endogenous leptin were also observed. Therefore, current study seems to suggest an important role of compounds having antioxidant properties for the treatment of stress and related disorders.


2018 ◽  
Vol 61 ◽  
pp. 92-99 ◽  
Author(s):  
Lihui Zhou ◽  
Lian Ouyang ◽  
Shuangzhi Lin ◽  
Song Chen ◽  
YingJie Liu ◽  
...  

2021 ◽  
Author(s):  
Małgorzata Olszowy-Tomczyk ◽  
Łukasz Paprotny ◽  
Agnieszka Celejewska ◽  
Dorota Szewczak ◽  
Dorota Wianowska

Abstract The imbalance between the production of Reactive Oxygen Species (ROS) and their sequestration promotes the formation of so-called oxidative stress conditions which are considered crucial in the aging process and development of many human diseases. Glutathione plays an essential role in the antioxidative barricade against ROS. Its role in the detoxification process of xenobiotics and carcinogen is also known. However, there are no comparative studies on the antioxidant properties of both biological samples and glutathione as well as the change in these properties as a result of exposure to various stress factors. This paper fills this gap comparing the antioxidant activity of serum and plasma samples of the known glutathione content with the activity of glutathione itself assessed by the different methods. In addition, it reveals a significant role of environmental xenobiotics in oxidative stress and differentiates the stress induced by different groups of drugs, among which the greatest one has been demonstrated for antiarrhythmic drugs and cytostatics. More importantly, it proves that human plasma is more resistant to stress factors and N-acetylcysteine clearly promotes the extension of antioxidant properties of both the plasma and serum samples. The latter conclusion is consistent with the implied preventive and/or supportive action of this drug against SARS-CoV-2.


2018 ◽  
Vol 24 (19) ◽  
pp. 2180-2187 ◽  
Author(s):  
Mohammad Shamsul Ola ◽  
Dalia Al-Dosari ◽  
Abdullah S. Alhomida

Diabetic Retinopathy (DR) is one of the leading causes of decreased vision and blindness in developed countries. Diabetes-induced metabolic disorder is believed to increase oxidative stress in the retina. This results in deleterious change through dysregulation of cellular physiology that damages both neuronal and vascular cells. In this review, we first highlight the evidence of potential metabolic sources and pathways which increase oxidative stress that contribute to retinal pathology in diabetes. As oxidative stress is a central factor in the pathophysiology of DR, antioxidants therapy would be beneficial towards preventing the retinal damage. A number of experimental studies by our group and others showed that dietary flavonoids cause reduction in increased oxidative stress and other beneficial effects in diabetic retina. We then discuss the beneficial effects of the six major flavonoid families, such as flavanones, flavanols, flavonols, isoflavones, flavones and anthocyanins, which have been studied to improve retinal damage. Flavanoids, being known antioxidants, may ameliorate the retinal degenerative factors including apoptosis, inflammation and neurodegeneration in diabetes. Therefore, intake of potential dietary flavonoids would limit oxidative stress and thereby prevent the retinal damage, and subsequently the development of DR.


2020 ◽  
Vol 2020 ◽  
pp. 1-29 ◽  
Author(s):  
Rossella D’Oria ◽  
Rossella Schipani ◽  
Anna Leonardini ◽  
Annalisa Natalicchio ◽  
Sebastio Perrini ◽  
...  

Reactive oxygen species (ROS) are highly reactive chemical species containing oxygen, controlled by both enzymatic and nonenzymatic antioxidant defense systems. In the heart, ROS play an important role in cell homeostasis, by modulating cell proliferation, differentiation, and excitation-contraction coupling. Oxidative stress occurs when ROS production exceeds the buffering capacity of the antioxidant defense systems, leading to cellular and molecular abnormalities, ultimately resulting in cardiac dysfunction. In this review, we will discuss the physiological sources of ROS in the heart, the mechanisms of oxidative stress-related myocardial injury, and the implications of experimental studies and clinical trials with antioxidant therapies in cardiovascular diseases.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Wuyang Huang ◽  
Yunming Zhu ◽  
Chunyang Li ◽  
Zhongquan Sui ◽  
Weihong Min

The objective of this research was to survey the antioxidant functional role of the main anthocyanins of blueberries in endothelial cells. Changes on the reactive oxygen species (ROS), xanthine oxidase-1 (XO-1), superoxide dismutase (SOD), and heme oxygenase-1 (HO-1) in cells of malvidin and the two glycosides were investigated. The results showed that these anthocyanins decreased the levels of ROS and XO-1 but increased the levels of SOD and HO-1. Glycosides improved the antioxidant capacity of malvidin to a great extent. The changes in the antioxidant properties of malvidin-3-glucoside were more pronounced than malvidin-3-galactoside. Variation in levels of malvidin-3-glucoside and malvidin-3-galactoside had a significant impact on antioxidant properties to different extents. It indicates that blueberries are a good resource of anthocyanins, which can protect cells from oxidative deterioration and use blueberry as a potential functional food to prevent diseases related to oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document