scholarly journals Design, Synthesis and in vitro Anticancer Evaluation of New 2H-benzo[b][1,4]thiazin-3(4H)-one Based 1,2,3-Triazoles

2019 ◽  
Vol 31 (11) ◽  
pp. 2647-2652 ◽  
Author(s):  
O. Rajender ◽  
S. Narsimha ◽  
N. Vasudeva Reddy

A series of novel 2H-benzo[b][1,4]thiazin-3(4H)-one derived from 1,4-disubstituted 1,2,3-triazole derivatives (4a-j and 5a-j) were synthesized using Cu(I) catalyzed azide alkyne cyclization (CuAAC) reaction of the compounds 2 and 3 with various aromatic azides. The examination of in vitro anticancer activity revealed that the compounds 4d and 5d were found to possess a broad spectrum of anticancer activity against three cell lines MCF-7, HeLa and IMR-32 with IC50 values ranging from 26.28 ± 1.5 to 32.06 ± 0.3 M mL-1, respectively. The remaining compounds have shown good to moderate activity against the tested cell lines.

Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 10 ◽  
Author(s):  
Hehua Xiong ◽  
Jianxin Cheng ◽  
Jianqing Zhang ◽  
Qian Zhang ◽  
Zhen Xiao ◽  
...  

A series of 4-(pyridin-4-yloxy)benzamide derivatives containing a 1,2,3-triazole fragment were designed, synthesized, and their inhibitory activity against A549, HeLa, and MCF-7 cancer cell lines was evaluated. Most compounds exhibited moderate to potent antitumor activity against the three cell lines. Among them, the promising compound B26 showed stronger inhibitory activity than Golvatinib, with IC50 values of 3.22, 4.33, and 5.82 μM against A549, HeLa, and MCF-7 cell lines, respectively. The structure–activity relationships (SARs) demonstrated that the modification of the terminal benzene ring with a single electron-withdrawing substituent (fluorine atom) and the introduction of a pyridine amide chain with a strong hydrophilic group (morpholine) to the hinge region greatly improved the antitumor activity. Meanwhile, the optimal compound B26 showed potent biological activity in some pharmacological experiments in vitro, such as cell morphology study, dose-dependent test, kinase activity assay, and cell cycle experiment. Finally, the molecular docking simulation was performed to further explore the binding mode of compound B26 with c-Met.


2021 ◽  
Vol 12 (2) ◽  
pp. 1648-1658
Author(s):  
Benupani Sahu ◽  
Rajapandi R ◽  
Avik Maji ◽  
Abhik Paul ◽  
Tanushree Singha ◽  
...  

In the present study, eight numbers of new 3- (4-methoxy phenyl)-5-substituted phenyl-2-pyrazoline-1-carbothioamide (5a-h) have been synthesized from 1- (4-methoxy phenyl)-3- (substituted phenyl)-prop-2-en-1-one (3a-h) and structurally characterized by using FT-IR, 1H NMR, 13C NMR, Mass and Elemental analysis. The synthesized molecules were biologically evaluated for their in vitro anticancer activity against human breast adenocarcinoma (MCF-7), liver cancer (Hep-G2) and leukaemia cancer (K-562) cell line using Sulforhodamine B (SRB) bioassay technique. From the all synthesized compounds 5a, 5c, 5d, and 5e exhibited potent anticancer activity (GI50= <10µg/ml) as compared to the controlled drug 5-Fluorouracil (5-FU) (GI50=44.5µg/ml) and Adriamycin (ADR) (GI50= <10µg/ml) on MCF-7 cell lines. Besides this, all the synthesized compounds have exhibited moderate activity against human liver cancer (Hep-G2) and leukaemia cancer (K-562) cell lines. In addition, molecular docking studies were also explored in order to study the probable binding specificity into the active site of Epidermal Growth Factor Receptor tyrosine kinase (EGFR) (PDB ID: 1M17) using Molegro Virtual Docker Evaluation 2013 6.0.1 (MVD). Based on the molecular docking result, it was found that compound 5a exhibited the best interaction with the above target (i.e., EGFR) by interacting with specific amino acid residues such as: Thr 766, Gin 767, Thr 830, Cys 575, Ala 719 and Met 769.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2961
Author(s):  
Eman M. Othman ◽  
Amany A. Bekhit ◽  
Mohamed A. Anany ◽  
Thomas Dandekar ◽  
Hanan M. Ragab ◽  
...  

The present study reports the synthesis of new purine bioisosteres comprising a pyrazolo[3,4-d]pyrimidine scaffold linked to mono-, di-, and trimethoxy benzylidene moieties through hydrazine linkages. First, in silico docking experiments of the synthesized compounds against Bax, Bcl-2, Caspase-3, Ki67, p21, and p53 were performed in a trial to rationalize the observed cytotoxic activity for the tested compounds. The anticancer activity of these compounds was evaluated in vitro against Caco-2, A549, HT1080, and Hela cell lines. Results revealed that two (5 and 7) of the three synthesized compounds (5, 6, and 7) showed high cytotoxic activity against all tested cell lines with IC50 values in the micro molar concentration. Our in vitro results show that there is no significant apoptotic effect for the treatment with the experimental compounds on the viability of cells against A549 cells. Ki67 expression was found to decrease significantly following the treatment of cells with the most promising candidate: drug 7. The overall results indicate that these pyrazolopyrimidine derivatives possess anticancer activity at varying doses. The suggested mechanism of action involves the inhibition of the proliferation of cancer cells.


2020 ◽  
Vol 17 (5) ◽  
pp. 563-573 ◽  
Author(s):  
Chandrakant Dhondiram Pawar ◽  
Dattatraya Navnath Pansare ◽  
Devanand Baburao Shinde

Background: Thiophene ring forms important building block in medicinal chemistry. Literature reveals that thiophene ring in combination with different groups shows different activity. By keeping these things in mind we have designed and synthesized a new series of amide and sulfonamide coupled thiophene. A series of novel substituted 3-sulfamoylbenzo[b]thiophene-4- carboxamide molecules containing sulfonamide and amide group were designed, synthesized and used for anti-proliferative activity study. Methods: The final compounds 16-36 were synthesized by using series of reactions comprising sulfonation, sulfonamide coupling, hydrolysis and peptide coupling. The yields of compounds 16- 36 are in the range of 90-98%. The structures of the synthesized compounds were elucidated and confirmed by 1H NMR, 13C NMR, LCMS and the purity was checked through HPLC analysis. The compounds were further tested for their in vitro anticancer activity against a series of cell lines A549, HeLa, MCF-7 and Du-145. Results: The intermediates 8-13, 15 and final compounds 16-36 were synthesized in good yields. The synthesized compounds were further tested for their anticancer activity and most of compounds showed moderate to good anticancer activity against all four cell lines. Conclusion: We have synthesized 21 compounds and were screened for anticancer activity against MCF-7, HeLa, A-549 and Du-145 cancer cell lines. Most of the compounds were active for tested cell lines with IC50 value in the range of 1.81 to 9.73 μM. The compounds 18, 19, 21, 25, 30, 31 and 33 are most active in cell line data with IC50 value in the range of 1.81 to 2.52 μM.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3041
Author(s):  
Xiaohan Hu ◽  
Sheng Tang ◽  
Feiyi Yang ◽  
Pengwu Zheng ◽  
Shan Xu ◽  
...  

Two series of olmutinib derivatives containing an acrylamide moiety were designed and synthesized, and their IC50 values against cancer cell lines (A549, H1975, NCI-H460, LO2, and MCF-7) were evaluated. Most of the compounds exhibited moderate cytotoxic activity against the five cancer cell lines. The most promising compound, H10, showed not only excellent activity against EGFR kinase but also positive biological activity against PI3K kinase. The structure–activity relationship (SAR) suggested that the introduction of dimethylamine scaffolds with smaller spatial structures was more favorable for antitumor activity. Additionally, the substitution of different acrylamide side chains had different effects on the activity of compounds. Generally, compounds H7 and H10 were confirmed as promising antitumor agents.


2021 ◽  
Vol 11 (19) ◽  
pp. 9139
Author(s):  
Maria Stefania Sinicropi ◽  
Cinzia Tavani ◽  
Camillo Rosano ◽  
Jessica Ceramella ◽  
Domenico Iacopetta ◽  
...  

Breast cancer is still considered a high-incidence disease, and numerous are the research efforts for the development of new useful and effective therapies. Among anticancer drugs, carbazole compounds are largely studied for their anticancer properties and their ability to interfere with specific targets, such as microtubule components. The latter are involved in vital cellular functions, and the perturbation of their dynamics leads to cell cycle arrest and subsequent apoptosis. In this context, we report the anticancer activity of a series of carbazole analogues 1–8. Among them, 2-nitrocarbazole 1 exhibited the best cytotoxic profile, showing good anticancer activity against two breast cancer cell lines, namely MCF-7 and MDA-MB-231, with IC50 values of 7 ± 1.0 and 11.6 ± 0.8 μM, respectively. Furthermore, compound 1 did not interfere with the growth of the normal cell line MCF-10A, contrarily to Ellipticine, a well-known carbazole derivative used as a reference molecule. Finally, in vitro immunofluorescence analysis and in silico studies allowed us to demonstrate the ability of compound 1 to interfere with tubulin organization, similarly to vinblastine: a feature that results in triggering MCF-7 cell death by apoptosis, as demonstrated using a TUNEL assay.


Author(s):  
Nishtha Shalmali ◽  
Sandhya Bawa ◽  
Md Rahmat Ali ◽  
Sourav Kalra ◽  
Raj Kumar ◽  
...  

Background: Indoline-2,3-dione comprises a leading course group of heterocycles endowed with appealing biological actions, including anticancer activity. There are significant justifications for exploring the anticancer activity of Schiff base derivatives of isatin as a vast number of reports have documented remarkable antiproliferative action of isatin nucleus against various cancer cell lines. Aims and Objectives: A series of arylthiazole linked 2H-indol-2-one derivatives (5a-t) was designed and synthesized as potential VEGFR-2 kinase inhibitors keeping the essential pharmacophoric features of standard drugs, like sunitinib, sorafenib, nintedanib, etc. They were evaluated for their in vitro anticancer activity. The aim of this study was to investigate and assess the anticancer potential of isatin-containing compounds along with their kinase inhibition activity. Methods: The title compounds were synthesized by reacting substituted isatins with para-substituted arylthiazoles using appropriate reaction conditions. Selected synthesized derivatives went under preliminary screening against a panel of 60 cancer cell lines at NCI, the USA, for single-dose and five dose assays. Molecular docking was performed to explore the binding and interactions with the active sites of the VEGFR-2 receptor (PDB Id: 3VHE). Derivatives 5a, 5b, 5c, 5d, 5g, 5h, and 5m were assessed for in vitro inhibition potency against Human VEGFR-2 using ELISA (Enzyme-Linked Immunosorbent Assay) kit. All the target compounds were determined against human colon cancer cell line SW480 (colorectal adenocarcinoma cells). Cellular apoptosis/necrosis was determined by flow cytometry using annexin V-FITC. DNA content of the cells was analyzed by flow cytometry and the cycle distribution was quantified. Results: Compounds 5a and 5g exhibited noteworthy inhibition during a five-dose assay against a panel of 60 cell lines with MID GI50 values of 1.69 and 1.54 µM, respectively. Also, both the lead compounds 5a and 5g demonstrated promising VEGFR-2 inhibitory activity with IC50 values of 5.43±0.95 and 9.63±1.32 µM, respectively. The aforesaid potent compounds were found effective against SW480 (colorectal adenocarcinoma cells) with IC50 values of 31.44 µM and 106.91 µM, respectively. Compound 5a was found to arrest the cell cycle at the G2/M phase, increasing apoptotic cell death. The docking study also supported VEGFR-2 inhibitory activity as both compounds 5a and 5g displayed promising binding and interactions with the active sites of VEGFR-2 receptor (PDB: 3VHE) with docking scores -9.355 and -7.758, respectively. All the compounds obeyed Lipinski’s rule of five. Conclusion: Indoline-2,3-dione and thiazole have huge potential to be considered a steer combination approach for developing promising kinase inhibitors as cancer therapeutics.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4388 ◽  
Author(s):  
Morak-Młodawska ◽  
Pluta ◽  
Latocha ◽  
Jeleń ◽  
Kuśmierz

A series of novel 1,2,3-triazole-diazphenothiazine hybrids was designed, synthesized, and evaluated for anticancer activity against four selected human tumor cell lines (SNB-19, Caco-2, A549, and MDA-MB231). The majority of the synthesized compounds exhibited significant potent activity against the investigated cell lines. Among them, compounds 1d and 4c showed excellent broad spectrum anticancer activity, with IC50 values ranging from 0.25 to 4.66 μM and 0.25 to 6.25 μM, respectively. The most promising compound 1d, possessing low cytotoxicity against normal human fibroblasts NHFF, was used for gene expression analysis using reverse transcription–quantitative real-time PCR (RT–qPCR). The expression of H3, TP53, CDKN1A, BCL-2, and BAX genes revealed that these compounds inhibited the proliferation in all cells (H3) and activated mitochondrial events of apoptosis (BAX/BCL-2).


Sign in / Sign up

Export Citation Format

Share Document