scholarly journals Green Synthesis, Texture, Electron Diffraction, Thermal and Optical Properties of Cobalt Doped Arginine Carbon Nanotubes

2021 ◽  
Vol 33 (5) ◽  
pp. 1120-1124
Author(s):  
Sarvesh Kumar Shailesh ◽  
B. Tiwari ◽  
K. Yadav

In this work, a simple and viable method of green synthesis of multi-walled cobalt doped arginine carbon nanotubes (CNT’s) by chemical precipitation method using arginine amino acid is reported. The atomic force microscopy confirmed that metal ions present in a branched fashion on the surface of Co-doped arginine CNT’s and the obtained particle with diameter 20 nm well dispersed on the carbon nanotubes. The TEM analysis indicates the interlayer separation between the two adjacent carbon walls is estimated to be about 0.34 nm. The electron diffraction patterns indicate that the tube has nearly identical chirality for all of the concentric graphitic layers, as a zigzag-type MWCNT. The SEM analysis predicted tube like morphology and strain is existed on the surface of the CNTs. The Raman spectra confirmed the armchair (n = 8 to 11) multi-walled nanotubes with this chirality are assigned as a semiconducting type of nanotubes. The thermal property was studied by thermogravimetric analysis, differential thermal analysis and predicted the 27.81 % purity in CNTs.

2011 ◽  
Vol 467-469 ◽  
pp. 312-315
Author(s):  
Gang Li ◽  
Wen Ming Cheng

Ultra-thin (20 nm) nickel catalyst films were deposited by sputtering on SiO2/Si substrates. At the pretreatments, ammonia (NH3) was conducted for different time in a thermal chemical vapor deposition (CVD) system. Pretreated samples were characterized using atomic force microscopy (AFM). After the pretreatment, acetylene was introduced into the chamber for 10 min, samples were characterized using scanning electron micrograph (SEM) and X-ray diffraction (XRD). It was concluded that NH3 pretreatment was very crucial to control the surface morphology of catalytic metals and thus to achieve the vertical alignment of carbon nanotubes (CNTs). With higher density of the Ni particles, better alignment of the CNTs can be obtained due to steric hindrance effect between neighboring CNTs.


2018 ◽  
Vol 915 ◽  
pp. 93-97
Author(s):  
Filiz Boran

In this work, firstly we described the effect of freeze drying on modification of raw diatomite. And then, modified diatomite-leaf-like copper oxide (CuO) nanosheet composite was successfully prepared by surfactant-free in-situ chemical precipitation method. The structure, morphology and elemental analysis of CuO nanosheets and its composite were analyzed by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy and energy dispersive X-ray spectroscopy (EDAX). Dimensions of leaf-like CuO nanosheets were approximately determined as 160 nm in width, 320 nm in length and 20 nm in thickness. According to the EDAX spectrum, leaf-like CuO nanosheets composed of Cu and O atoms without any impurity and also uniformly covered the entire surface of modified diatomite.


1992 ◽  
Vol 260 ◽  
Author(s):  
K. L. Westra ◽  
D. J. Thomson

ABSTRACTAtomic Force microscopy, scanning electron microscopy, and transmission electron microscopy was used to study Al/Si/Cu films sputter deposited at 2 and 45 mTorr. AFM and SEM analysis shows the films to consist of columnar structures commonly seen in PVD deposited thin films, while the TEM analysis showed the films be polycrystalline. Comparing the columnar structures seen in the AFM and SEM study to the grains found in the TEM study, we conclude that the columns consist of single grains. Thus for these films AFM or SEM analysis can be used to determine the grain size. Finally, an AFM scan of a Al/Si/Cu deposited via was performed. The AFM image clearly shows the high resolution of the AFM, while it also illustrates the problems caused by the finite size of the AFM tip.


1994 ◽  
Vol 9 (9) ◽  
pp. 2450-2456 ◽  
Author(s):  
L.C. Qin

Electron diffraction intensities from cylindrical objects can be conveniently analyzed using Bessel functions. Analytic formulas and geometry of the diffraction patterns from cylindrical carbon nanotubes are presented in general forms in terms of structural parameters, such as the pitch angle and the radius of a tubule. As an example the Fraunhofer diffraction pattern from a graphitic tubule of structure [18,2] has been simulated to illustrate the characteristics of such diffraction patterns. The validity of the projection approximation is also discussed.


Fe2O3 /CeO2 nanocomposite was synthesized by a chemical precipitation method in room temperature. The prepared nanocomposite has been subjected to some characterization techniques such as XRD, SEM, FTIR, CV, etc., The presence of crystalline phases of CeO2 and Fe2O3 were confirmed by the powder X–Ray diffraction analysis. Surface morphology of the prepared nanocomposite has been analyzed using SEM analysis. The functional group vibrations were analyzed by FTIR technique. The maximum specific capacitance achieved by using 1M KOH electrolyte solution is about 242 Fg-1 at 5 Ag-1 current density.


Author(s):  
Seyed Ali Hosseini ◽  
Ramin Saeedi

<p>The photocatalytic activity of Bi<sub>2</sub>O<sub>3</sub> and Ag<sub>2</sub>O-Bi<sub>2</sub>O<sub>3</sub> was evaluated by degradation of aqueous methyl orange as a model dye effluent. Bi<sub>2</sub>O<sub>3</sub> was synthesized using chemical precipitation method. Structural analysis revealed that Bi<sub>2</sub>O<sub>3</sub> contain a unique well-crystallized phase and the average crystallite size of 22.4 nm. The SEM analysis showed that the size of Bi<sub>2</sub>O<sub>3</sub> particles was mainly in the range of 16-22 nm. The most important variables affecting the photocatalytic degradation of dyes, namely reaction time, initial pH and catalyst dosage were studied, and their optimal amounts were found at 60 min, 5.58 and 0.025 g, respectively. A good correlation was found between experimental and predicted responses, confirming the reliability of the model. Incorporation of Ag<sub>2</sub>O in the structure of composite caused decreasing band gap and its response to visible light. Because a high percentage of sunlight is visible light, hence Ag<sub>2</sub>O-Bi<sub>2</sub>O<sub>3</sub> nano-composite could be used as an efficient visible light driven photocatalyst for degradation of dye effluents by sunlight. Copyright © 2017 BCREC GROUP. All rights reserved</p><p><em>Received: 15<sup>th</sup> August 2016; Revised: 20<sup>th</sup> December 2016; Accepted: 21<sup>st</sup> December 2016</em></p><p><strong>How to Cite:</strong> Hosseini, S.A., Saeedi, R. (2017). Photocatalytic Degradation of Methyl Orange on Bi<sub>2</sub>O<sub>3</sub> and Ag<sub>2</sub>O-Bi<sub>2</sub>O<sub>3</sub> Nano Photocatalysts. <em>Bulletin of Chemical Reaction Engineering &amp; Catalysi</em>s, 12 (1): 96-105 (doi:10.9767/bcrec.12.1.623.96-105)</p><p><strong>Permalink/DOI:</strong> http://dx.doi.org/10.9767/bcrec.12.1.623.96-105</p><p> </p>


2014 ◽  
Vol 952 ◽  
pp. 137-140 ◽  
Author(s):  
R. Yuvakkumar ◽  
J. Suresh ◽  
Sun Ig Hong

Nephelium lappaceum L. peels was effectively used for the synthesis of zinc oxide nanoparticles as a natural ligation agent. The role of rambutan extrac on the formation of zinc oxide nanoparticles was confirmed employing HPLC and GC-MS studies. The XRD and TEM revealed the crystallinity and spherical morphology of the biosynthesized nanoparticles. The size of the particles was found to be 20 nm as deduced from XRD and TEM analysis.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yuvaraj Haldorai ◽  
Jae-Jin Shim

Chitosan (CS) anchored copper oxide (CuO) hybrid material was prepared by chemical precipitation method. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) confirmed the formation of CS-CuO hybrid. Transmission electron microscopy (TEM) analysis showed the immobilization of CuO nanoparticles on the surface of CS. The hybrid was also characterized by thermogravimetric analysis (TGA) and zeta potential. The hybrid exhibited high photocatalytic activity as evident from the degradation of methylene blue (MB) dye. The result revealed substantial degradation of the MB dye (84%) under UV-light illumination. The antibacterial activity of hybrid againstEscherichia coliwas examined by colony forming units. It was proved that the CS encapsulated CuO hybrid exhibited excellent antibacterial activity.


2012 ◽  
Vol 229-231 ◽  
pp. 256-259 ◽  
Author(s):  
Ropisah Mie ◽  
Mohd Wahid Samsudin ◽  
Laily B. Din ◽  
Azizan Ahmad

Chemical synthetic method in synthesizing silver nanoparticle was quite expensive, toxic and flammable. In order to enhance green technology, we develop a simple biological method for the green synthesis of silver nanoparticles using two lichens species, Parmotrema praesorediosum and Ramalina dumeticola. Silver nanoparticles were characterized using UV-Vis absorption spectroscopy and TEM. Within 72 hours reaction time, absorption spectra of silver nanoparticles formed in R. dumeticola and P. praesorediosum has absorbance peak at 407 nm and 423 nm, respectively. TEM analysis showed the average size of 20 nm of silver nanoparticles obtained in R. dumeticola and the average size of 42 nm of silver nanoparticles obtained in P. praesorediosum. These two lichens species are able to synthesize silver nanoparticles through green chemistry method, which are environmental friendly and cost effective. This is for the first time that any species of lichens was used for the synthesis of silver nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document