Studies on bending strength and collapse temperature of a steel beam considering effects of steel strain rate and heating rate at elevated temperatures

Author(s):  
Fuimnobu Ozaki ◽  
Takumi Umemura

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fuminobu Ozaki ◽  
Takumi Umemura

PurposeIn this study, the bending strength, flexural buckling strength and collapse temperature of small steel specimens with rectangular cross-sections were examined by steady and transient state tests with various heating and deformation rates.Design/methodology/approachThe engineering stress and strain relationships for Japan industrial standard (JIS) SN400 B mild steels at elevated temperatures were obtained by coupon tests under three strain rates. A bending test using a simple supported small beam specimen was conducted to examine the effects of the deformation rates on the centre deflection under steady-state conditions and the heating rates under transient state conditions. Flexural buckling tests using the same cross-section specimen as that used in the bending test were conducted under steady-state and transient-state conditions.FindingsIt was clarified that the bending strength and collapse temperature are evaluated by the full plastic moment using the effective strength when the strain is equal to 0.01 or 0.02 under fast strain rates (0.03 and 0.07 min–1). In contrast, the flexural buckling strength and collapse temperature are approximately evaluated by the buckling strength using the 0.002 offset yield strength under a slow strain rate (0.003 min–1).Originality/valueRegarding both bending and flexural buckling strengths and collapse temperatures of steel members subjected to fire, the relationships among effects of steel strain rate for coupon test results, heating and deformation rates for the heated steel members were minutely investigated by the steady and transient-state tests at elevated temperatures.



Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3979
Author(s):  
Anna Strąkowska ◽  
Sylwia Członka ◽  
Karolina Miedzińska ◽  
Krzysztof Strzelec

The subject of the research was the production of silsesquioxane modified rigid polyurethane (PUR) foams (POSS-Cl) with chlorine functional groups (chlorobenzyl, chloropropyl, chlorobenzylethyl) characterized by reduced flammability. The foams were prepared in a one-step additive polymerization reaction of isocyanates with polyols, and the POSS modifier was added to the reaction system in an amount of 2 wt.% polyol. The influence of POSS was analyzed by performing a series of tests, such as determination of the kinetics of foam growth, determination of apparent density, and structure analysis. Compressive strength, three-point bending strength, hardness, and shape stability at reduced and elevated temperatures were tested, and the hydrophobicity of the surface was determined. The most important measurement was the determination of the thermal stability (TGA) and the flammability of the modified systems using a cone calorimeter. The obtained results, after comparing with the results for unmodified foam, showed a large influence of POSS modifiers on the functional properties, especially thermal and fire-retardant, of the obtained PUR-POSS-Cl systems.





2015 ◽  
Vol 11 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Ravindranadh Bobbili ◽  
B. Ramakrishna ◽  
V. Madhu ◽  
A.K. Gogia


1965 ◽  
Vol 180 (1) ◽  
pp. 285-294 ◽  
Author(s):  
F. U. Mahtab ◽  
W. Johnson ◽  
R. A. C. Slater

The dynamic indentation of copper (B.S. 1433) and an aluminium alloy (B.S. 1476 HE 10) has been investigated, using cylindro-conical projectiles fired from an air-actuated gun. The experiments were performed with impact velocities varying between 1000 and 2500 in/s and at elevated temperatures up to 600°C for the copper and 550°C for the aluminium alloy. The magnitude of the corresponding range of mean strain rate was then 103-104/s, depending upon the material; impact velocity and temperature (see Appendix I). For the range of impact velocities investigated no consequential transition temperature † was encountered. The dynamic temperature coefficient† thus remained constant throughout the test temperature range for each material. This dynamic temperature coefficient was found to be equal to the static temperature coefficient corresponding to the sub-transitional temperature range for the respective materials. The mean effective dynamic indentation pressure is shown to decrease with temperature but the ratio of this dynamic pressure to the static indentation pressure increases with temperature. Strain rate effects for both materials were negligible for sub-transitional temperatures but become important at super-transitional temperatures. It was observed that the parameters on which the strain rate effect depends are in some way related to the absolute melting point of a pure metal.







2019 ◽  
Vol 15 (2) ◽  
pp. 142-153
Author(s):  
Ahmadreza Khodabandehlo ◽  
Mohamad Taghi Kazemi

AbstractWith spreading of population and increasing of instruction, and also because of limited resources and materials, the demand for using novel materials in building industry has increased. The reinforced concrete columns and steel beams are used in structures with composite moment frame (RCS). Use of compression strength in proportion with concrete and bending strength of steel beam has bestowed these structures less weight than that of concrete structures and made it easier to access the measure of strong column - weak beam especially within long span in these structures. The most important part of these structures is connection of steel beam with the reinforced concrete column. These connections are divided into two general groups of connection with bracing beam and with bracing column from the joint. This paper aims to study the seismic behavior and parameters of RCS composite frame composed of steel beams and strong concrete column. The finite element method was analyzed by ABAQUS software and data analyzed by Excel.



2016 ◽  
Vol 12 (3) ◽  
Author(s):  
Uiatan Aguiar Nogueira ◽  
Matilde Batista Melo ◽  
Daniel De Lima Araujo

RESUMO: A Análise de elementos estruturais, realizadas durante as etapas de projeto de uma estrutura, é parte fundamental para garantia de bom desempenho e estabilidade do sistema estrutural. Na execução de algumas estruturas, como as coberturas em edificações, é usual o emprego de perfis leves de aço formados a frio devido ao seu baixo peso. Esta pesquisa tem por objetivo avaliar a eficiência estrutural desses perfis quando comparados, por exemplo, aos perfis soldados compactos. Para tanto, foram realizados ensaios de flexão em quatro vigas biapoiadas submetidas a duas forças concentradas, de forma a se obter flexão pura no meio do vão das vigas. Estas foram instrumentadas para a determinação da sua rigidez e da sua resistência à flexão. A principal contribuição deste trabalho é demonstrar a eficiência estrutural de perfis formados a frio em seção caixa submetidos à flexão em comparação com perfis de seção tipo “H” soldados. ABSTRACT: The analysis of structural elements, in a structure’s design, is an essential step to ensure good performance and stability of the structural system. In any types of structures, such as roofing in buildings, it’s usual using cold-formed steel beams due to their small weight. This research seeks to evaluate the structural efficiency of cold-formed steel beams when compared, for example, to compact welded steel beams. Thus, bending tests were performed in four simply supported beams submitted to two concentrated loads, in order to obtain pure flexure at the mid-span of the beams. These beams were instrumented for the determination of their rigidity and bending strength. The results showed that the cold-formed steel beam, box-shaped, presented structural efficiency similar to the welded steel beam “H” shaped.



2017 ◽  
Vol 105 ◽  
pp. 642-647
Author(s):  
Tian Li ◽  
Yanqing Niu ◽  
Liang Wang ◽  
Terese Løvås


Sign in / Sign up

Export Citation Format

Share Document