scholarly journals Optimised Combinatorial Control Strategy for Active Anti-Roll Bar System for Ground Vehicle

2018 ◽  
Vol 7 (4.11) ◽  
pp. 140 ◽  
Author(s):  
N. Zulkarnain ◽  
H. Zamzuri ◽  
S. A. Saruchi ◽  
A. Hussain ◽  
S. S. Mokri ◽  
...  

The objective of this paper is to optimise the proposed control strategy for an active anti-roll bar system using non-dominated sorting genetic algorithm (NSGA-II) tuning method. By using an active anti-roll control strategy, the controller can adapt to current road conditions and manoeuvres unlike a passive anti-roll bar. The optimisation solution offers a rather noticeable improvement results compared to the manually-tuned method. From the application point of view, both tuning process can be used. However, using optimisation method gives a multiple choice of solutions and provides the optimal parameters compared to manual tuning method.  

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1705
Author(s):  
Ingrid Casallas ◽  
Robert Urbina ◽  
Carlos-Ivan Paez-Rueda ◽  
Gabriel Perilla ◽  
Manuel Pérez ◽  
...  

This paper explores the design of a Class-E amplifier with finite DC-feed inductance using three tuning methods. Furthermore, this work quantifies the impacts of the tuning process (referred to in this paper as the tuning effect) on the main figures of merit (FoMs) of this amplifier. The tuning goals were to guarantee two conditions: zero voltage and zero voltage derivative switching (i.e., soft-switching tuning). To the best of the authors’ knowledge, systematic tuning methods have not been analyzed before for this amplifier topology. Two of them are based on the iterative component tuning process, and they have been explored previously in the design of the conventional class-E amplifier with an RF choke inductance. The last tuning method explores the simultaneous adjustment of the control signal period and one amplifier capacitor. The analyzed tuning methods were validated by extensive simulations of case studies, which were designed following the power specifications of the Qi standard. In 100% and 96% of the case studies, zero voltage switching (ZVS) and zero-derivative voltage switching (ZDS) were achieved, respectively. Furthermore, we identified an unexpected behavior in the tuning process (referred to in this paper as the turning point), which consisted of a change of the expected trend of the soft-switching (i.e., ZVS and ZDS) point, and it occurred in 21% of the case studies. When this behavior occurred and converged to at least ZVS, the tuning process required more iterations and a large number of tuning variables. Additionally, after the tuning process, the total harmonic distortion and output power capacity were improved (i.e., in 78% and 61% of the case studies, respectively), whereas the output power, drain and added power efficiencies deteriorated (i.e., in 83%, 61% and 65% of the case studies, respectively) in the overall case studies. However, we could not identify an improvement in the overall FoMs related to the soft-switching tuning. Furthermore, the tuning impact was significant and produced some improvements and some deleterious effects for the FoMs in each case study, without a clear trend by FoMs or by tuning method. Therefore, the amplifier designer may choose the more favorable tuning method and the related FoM trade-offs for the required design specifications.


2018 ◽  
Vol 122 (1249) ◽  
pp. 487-518 ◽  
Author(s):  
M. Jones

ABSTRACTVirtual engineering tools are not currently employed extensively during the certification and commissioning of flight simulator motion systems. Subjective opinion is regarded as sufficient for most applications, as it provides verification that the motion platform does not cause false cueing. However, the results of this practice are systems that may be far from optimal for their specific purpose. This paper presents a new method for tuning motion systems objectively using a novel tuning process and tools which can be applied throughout the simulators life-cycle. The use of the tuning method is shown for a number of simulated test cases.


2019 ◽  
Vol 887 ◽  
pp. 475-483
Author(s):  
Mária Budiaková

The paper is oriented on the evaluation of the indoor climate in the big lecture hall. Providing the optimal parameters of the thermal comfort and the CO2 concentration is immensely important for the students in the interiors of a university. Meeting these parameters is inevitable not only from physiological point of view but also for achieving the desirable students' performance. The high CO2 concentration is related to incorrect and insufficient ventilation in the lecture hall and causes distractibility and feeling of tiredness of students. Experimental measurements were carried out in the winter season in 2016 in the big lecture hall in order to evaluate the thermal comfort and the CO2 concentration. The device Testo 480 was used for the measurements. Obtained values of air temperature, air relative humidity, air velocity, CO2 concentration are presented in the charts. Mechanical ventilation system and operation system of the big university lecture hall were evaluated on the basis of the parameters of the thermal comfort and on the basis of the CO2 concentration. Based on the findings, design recommendations for new big university lecture halls are derived. Furthermore, there are presented recommendations how to operate the existing big university lecture halls.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3067
Author(s):  
Rafal Szczepanski ◽  
Marcin Kaminski ◽  
Tomasz Tarczewski

The state feedback controller is increasingly applied in electrical drive systems due to robustness and good disturbance compensation, however its main drawback is related to complex and time consuming tuning process. It is particularly troublesome for designer, if the plant is compound, nonlinear elements are taken into account, measurement noise is considered, etc. In this paper the application of nature-inspired optimization algorithm to automatic tuning of state feedback speed controller (SFC) for two-mass system (TMS) is proposed. In order to obtain optimal coefficients of SFC, the Artificial Bee Colony algorithm (ABC) is used. The objective function is described and discussed in details. Comparison with analytical tuning method of SFC is also included. Additionally, the stability analysis for the control system, optimized using the ABC algorithm, is presented. Synthesis procedure of the controller is utilized in Matlab/Simulink from MathWorks. Next, obtained coefficients of the controller are examined on the laboratory stand, also with variable moment of inertia values, to indicate robustness of the controller with optimal coefficients.


2016 ◽  
Vol 682 ◽  
pp. 53-60
Author(s):  
Ildiko Peter ◽  
Christian Castella ◽  
Mario Rosso

The WE43 is a Mg-Y-Nd alloy that presents good mechanical properties and an high creep resistance. For these reasons currently is widely used in the aerospace and automotive industries. The setting of the right thermal heat treatment parameters plays a crucial role in determine the microstructure and consequently the mechanical properties of the alloy. With this in mind, the main goal of this work has been that to identify the optimal parameters to achieve a high impact resistance and at the same time, the most suitable choice, to reach also an important cost-saving solution, which is extremely important especially from the industrial point of view.


2002 ◽  
Vol 46 (1-2) ◽  
pp. 405-412 ◽  
Author(s):  
E. Müller ◽  
K. Kriebitzsch ◽  
P.A. Wilderer ◽  
S. Wuertz

Settling problems caused by pin-point sludge constitute a serious problem in biological wastewater treatment, particularly in many industrial plants. Until now, most studies focused on the relationship between pin-point sludge formation and either shearing forces or the impact of toxicants. This study deals with the community structure in both the micro- and macrofloc fraction which was analyzed by fluorescent in situ hybridization (FISH) and BIOLOG substrate utilization patterns. It was shown that each fraction consisted of different microbial communities with unique metabolic profiles suggesting that pin-point sludge formation is not due to dispersal of intact flocs but to microcolonies growing separately. Alternatively, macroflocs may have an architecture leading to segregation of microbial communities after floc dispersal. Further it could be shown that the formation of microflocs was influenced by sludge age. The best sludge sedimentation was obtained for a sludge age of 5 and 10 days. Additional analysis of extracellular polymeric substances (EPS) suggested that the lower protein to carbohydrate ratio of 10-day-old sludge led to better flocculation compared to 20-day-old sludge containing similar total amounts of EPS. From a practical point of view, addition of potassium (0.1 g/l) effected a noticeable improvement of sludge settleability.


2014 ◽  
Vol 960-961 ◽  
pp. 1356-1360 ◽  
Author(s):  
Yu Zhou ◽  
Zhi Yong Dai ◽  
Qiang Gang Wang ◽  
Ling Ye ◽  
Nian Cheng Zhou

This paper studies the instantaneous output power characteristics of photovoltaic inverters and its flexible power control strategy under unbalanced grid faults. Then the optimal parameters model of the power control is established with minimum integrated fluctuation amplitude of the active and reactive power as a goal when the constraint of the output current harmonic distortion of photovoltaic inverters is taken into account. Finally, the optimal power control of photovoltaic inverters based on dead-beat current tracking is realized and the feasibility of the proposed control strategy is verified with the power system transient software PSCAD/EMTDC.


2020 ◽  
Vol 322 ◽  
pp. 01051
Author(s):  
Filip Jeniš ◽  
Ivan Mazůrek

Recently, the intensive wear of rails, especially in curves of small radii and at switches, has been studied. The wear is caused by the high lateral force peak of the wheel against the rail when entering the curves. An effective solution for reducing undesirable lateral forces on the rail is to rotate the vehicle bogie in the direction of the rail curve, which influences the distribution of lateral force over the first and second wheelset. This reduces the force peak and thus the track wear. The bogie rotation is nowadays realized by actuators, which replace the yaw dampers. However, actuator implementation is complicated, expensive, energyintensive and demanding for the performance of a fail-safe system. From this point of view, a semi-actively controlled yaw damper appears to be a better candidate. An algorithm such as Skyhook can hold the sprung mass in the desired position. It is believed to be possible to rotate the vehicle bogie by the special S/A control strategy of a yaw damper. This paper deals with the possibilities and limits of the positioning of the sprung mass by the semi-actively controlled damper. It has been shown that the system relative attenuation and the damper response time have the greatest influence on the mass positioning efficiency.


Author(s):  
Sergio Andrés Pizarro Pérez ◽  
John E. Candelo-Becerra ◽  
Fredy E. Hoyos Velasco

The inertia issues in a microgrid can be improved by modifying the inverter control strategies to represent a virtual inertia simulation. This method employs the droop control strategy commonly used to share the power of a load among different power sources in the microgrid. This paper utilizes a modified droop control that represents this virtual inertia and applies an optimization algorithm to determine the optimal parameters and improve transient response. The results show better control when different variations are presented in the loads, leading the microgrid to have a better control of the operation. The optimization method applied in this research allows improvement to the transient response, thus avoiding unnecessary blackouts in the microgrid.


Sign in / Sign up

Export Citation Format

Share Document