scholarly journals Performance Evaluation of G2T FSO Link Under Various Weather Conditions

2018 ◽  
Vol 7 (4.30) ◽  
pp. 562
Author(s):  
Wafi A. Mabrouk ◽  
M. F.L Abdullah ◽  
M. S.M Gismalla

FSO technology has attracted a lot of popularity for a variety of applied telecommunication fields. It presents a wide range of advantages that place it in the frontier of high data rates applications, last mile problem and bottleneck issues. It has been preferred for its ease of deployment without fiber cables, no extra tariff fees, cost-effectiveness, and efficiency. FSO excels in performance when compared to contemporary RF technology. On the other hand, there is an increased demand for alternative rail communications solutions. In order to deliver a safer, reliable and fast internet access. In this paper, performance evaluation of a ground-to-train Free Space Optical link communication (G2T FSO) was performed. The system was simulated at 2.5 Gb/s link under several weather conditions. Receiver and geometrical loss were included as well. Furthermore, performance was evaluated in terms of received power, Q factor, BER and eye diagram. Substantial vulnerability to severe fog attenuation was found. Although the system was able to operate with acceptable eye height with min BER of 10-38.  

2017 ◽  
Vol 38 (3) ◽  
Author(s):  
Amit Gupta ◽  
Nagpal Shaina

AbstractIntersymbol interference and attenuation of signal are two major parameters affecting the quality of transmission in Free Space Optical (FSO) Communication link. In this paper, the impact of these parameters on FSO communication link is analysed for delivering high-quality data transmission. The performance of the link is investigated under the influence of amplifier in the link. The performance parameters of the link like minimum bit error rate, received signal power and Quality factor are examined by employing erbium-doped fibre amplifier in the link. The effects of amplifier are visualized with the amount of received power. Further, the link is simulated for moderate weather conditions at various attenuation levels on transmitted signal. Finally, the designed link is analysed in adverse weather conditions by using high-power laser source for optimum performance.


Author(s):  
Farouk Shakir ◽  
Mazin Ali A. Ali ◽  
Firas Ameer

Free-space optical (FSO) communication consider license free, high data rate, wide bandwidth and cost-effective. Multi-input Multi-output (MIMO) systems can be employed to reduce the attenuation by heavy fog and improve FSO channel capacity. In this paper a single-input single-output and multi–input multi-output examined to investigate the performance of these systems under heavy fog. A comparison is made in terms of received optical power, signal to noise ratio, and bit error rate (BER) using OptiSystem version 7.0. The signal reaches to link up to 1.7km, 1.55km, 1.5km, and 1.4km for 4Tx/4Rx, 3Tx/3Rx, 2Tx/2Rx, 1Tx/1Rxrespectively. The results showed that the quality of received power is enhancement by using up to four beams.


Photonics ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 318
Author(s):  
Panagiotis J. Gripeos ◽  
Hector E. Nistazakis ◽  
Andreas D. Tsigopoulos ◽  
Vasilis Christofilakis ◽  
Evgenia Roditi

FSO communication is a viral technology among optical wireless communications, gathering the interest of both researchers and manufacturers. This is because of the many advantages associated with FSO communication, including high data rates, reliability, safety, and economy. However, there are several unavoidable drawbacks that shadow the performance of FSO systems. For example, atmospheric turbulence is a well-known problem related to the weather conditions of the channel, which causes the scintillation effect. Also, spatial jitter due to pointing errors is a critical factor of the link’s performance, caused by occasional misalignments between the transmitter and the receiver. Moreover, time jitter is another limiting agent that deteriorates the total throughput, inducing bit stream misdetections, caused by the arrival of out-of-sync pulses. All three effects have been exhaustively studied and many statistical models and interesting solutions have been proposed in the literature to estimate their magnitude and compensate for their impact. In this work, the turbulence effect was treated by Málaga distribution, the spatial jitter effect was regulated by the non-zero boresight model, and the time jitter effect was modeled by the generalized Gaussian distribution. Various modulation schemes were studied, along with DF multi-hop and optimal combining diversity techniques at the receiver’s end. New, accurate mathematical expressions of average BER performance have been obtained, and valuable conclusions were drawn thanks to the presented numerical results.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 617 ◽  
Author(s):  
Yasir Mehmood ◽  
Lei Zhang ◽  
Anna Förster

Machine-type communication (MTC) is an emerging communication trend where intelligent machines are capable of communicating with each other without human intervention. Mobile cellular networks, with their wide range, high data rates, and continuously decreasing costs, offer a good infrastructure for implementing them. However, power consumption is a great issue, which has recently been addressed by 3GPP (3rd Generation Partnership Project) by defining power-saving mechanisms. In this paper, we address the problem of modeling these power-saving mechanisms. Currently existing modeling schemes do not consider the full range of states in the discontinuous reception (DRX) mechanism in LTE-A networks. We propose a semi-Markov based analytical model, which closes this gap and shows very good results in terms of predicting performance evaluation metrics, such as the power-saving factor and wake-up latency of MTC devices compared to simulation experiments. Furthermore, we offer an evaluation of the DRX parameters and their impact on power consumption of MTC devices.


2014 ◽  
Vol 35 (4) ◽  
Author(s):  
Sushank Chaudhary ◽  
Angela Amphawan

AbstractComplementing wireless radio networks with free-space optics (FSO) achieves high data rates by modulating radio subcarriers over an optical carrier without expensive optical fiber cabling, enabling a pervasive platform for reaching underserved areas. In this paper, we review the main features of FSO for terrestrial and inter-satellite communications. Simulations of 1 Gbps data transmission through FSO links in both terrestrial and inter-satellite communications have been investigated to highlight potential atmospheric challenges in FSO.


2018 ◽  
Vol 39 (3) ◽  
pp. 335-341 ◽  
Author(s):  
Gaurav Soni

Abstract Free Space Optics (FSO) communication technique is a unique method for the communication between optical transmitter and optical receiver using a free space as a medium. The advantages of FSO over other wireless communication techniques is its low power, high security, low cost infrastructure, high data rates and unlicensed spectrum. There are many atmospheric disturbances like rain, fog, water molecules particles which degrade the performance of the FSO Link. In this paper, the FSO Link is optimized at different optical wavelengths of 1550 nm, 850 nm, 650 nm and 532 nm keeping into consideration the various atmospheric challenges and weather conditions. The performance of the proposed FSO link is evaluated in terms of BER and Quality factor. Simulation results for the proposed FSO link achieve maximum link range of 1000 m at 1550 nm. The achieved values of Bit Error Rate (BER) and Quality Factor (Q) for FSO link at 1550 nm are 10e-9 and 5.58 respectively.


2019 ◽  
Vol 41 (1) ◽  
pp. 31-36
Author(s):  
H. Djellab ◽  
A. Bouarfa ◽  
S. Bojanic

Abstract In recent years, free space optical communication (FSO) has become a leader for its unique characteristics: large bandwidth, unlicensed spectrum, simple implementation, low power and high data rate. However, we use as a transmission medium for Spectral Amplitude Coding-Optical Code Division Multiple Access SAC OCDMA system. In this paper, we investigate the optimum received power of FSO communication system employing SAC OCDMA, by using different detection technique, such us Spectral Direct Detection SDD and Single Photodiode Detection (SPD) technique under optical Gaussian filter decoder schemes with Modified Double Weight code (MDW). In this work, the adverse effects of atmospheric channel limit the possibility of a large FSO communication, moderate turbulence and hazy weather conditions are considered. The results show that the performance of the proposed system with wavelength-division-multiplexing (WDM) multiplexer (MUX) based on Gaussian optical filter with SDP detection fares better than the system employing SDD technique.


2021 ◽  
Author(s):  
Muhammad Salman Bashir ◽  
Ming-Cheng Tsai ◽  
Mohamed-Slim Alouini

Free-space optical (FSO) communications is an important technology that will be used for supporting high data-rates in the backhaul of next generation of wireless communication networks. In this paper, we have compared the probability of error performance of two types of receivers used in FSO today: a receiver based on a single detector, and a receiver based on an array of detectors. The performance of these two receivers is compared for a number of fusion algorithms for an array of detectors such as equal gain combiner (EGC), selection combiner (SC), switched combiner (SWC) and the maximal ratio combiner (MRC). From this study, we conclude that even though the array of detectors adds more noise in the sufficient statistic by virtue of large number of detectors, using more computationally expensive fusion algorithms (such as SC and MRC) can help us achieve a superior probability of error performance as opposed to a single-detector receiver for practical channel conditions. <br>


Sign in / Sign up

Export Citation Format

Share Document