scholarly journals Implementation of missed call for making a password and controlling devices

2018 ◽  
Vol 7 (4.44) ◽  
pp. 127
Author(s):  
Ferry Wahyu Wibowo ◽  
. .

The cellular phones do not use telephone cables. The cellular phones send radio signals into the air to the nearest transmitter tower called the base station. The transmitter tower will emit the signal to the next station and so on until it reaches the phone that is called. When a new call arrives on the phone number, it will generate a tone until it is picked up, rejected, or the time has been ended to receive this tone (each telephone network provider has different policies related to the time used for this telephone connection so that this causes the number of rings raised to vary). This paper focuses on the missed call services which is one of the features found on the telephone. The tone that has been generated by this calling can emerge ring. This ring can be detected and manipulated to be something useful for controlling devices or making some password.  

2021 ◽  
Author(s):  
Elyes Balti

In this work, we present a framework analysis of a millimeter wave (mmWave) vehicular communications systems. Communications between vehicles take place through a cooperative relay which acts as an intermediary base station (BS). The relay is equipped with multiple transmit and receive antennas and it employs decode-and-forward (DF) to process the signal. Also, the relay applies maximal ratio combining (MRC), and maximal ratio transmission (MRT), respectively, to receive and forward the signal.As the vehicles' speeds are relative high, the channel experiences a fast fading and this time variation is modeled following the Jake's autocorrelation model. We also assume narrowband fading channel. Closed-form expressions of the reliability metrics such as the outage probability and the mean rate are derived. Capitalizing on these performances, we derive the high signal-to-noise-ratio (SNR) asymptotes to get full insights into the system gains such as the diversity and coding gains.


2021 ◽  
Vol 27 (3) ◽  
pp. 85-92
Author(s):  
F.I. Bushuev ◽  
◽  
M.P. Kaliuzhnyi ◽  
N.A. Kulichenko ◽  
A.V. Shulga ◽  
...  

During the decade of research, the Research Institute “Mykolaiv Astronomical Observatory” (RI “MAO”) developed hardware and software for monitoring, extracting, and calculating the parameters of meteor phenomena using the forward scattering by meteor ionized trail of the signals of over-the-horizon FM-stations broadcasted in the frequency range of 88—108 MHz. This allowed creating a network of observations of meteor phenomena in the radio range, which consists of six stations located in Mykolaiv (three stations), Rivne, Lviv, and Hlukhiv. The stations have identical hardware and software. Yagi-Uda antennas with six or eight horizontal vibrators and SDR receivers based at RTR2832U microchip are used to receive radio signals. The station software performs continuous registration and analysis of received radio signals at the output of quadrature detectors of the receivers, automatic detection of moments of appearances of meteor reflections, formation, and sending by e-mail daily reports on detected meteor phenomena. Equipment setup and current monitoring of stations operations are carried out by the RI «MAO» using remote access to station computers via the Internet. Monthly reports on the number of meteor events recorded by each station are posted on the site of Radio Meteor Observation Bulletin (RMOB). The article presents the results, obtained by the network in 2017—2019, confirming a correspondence of daily variations in the number of meteors registered by network stations, to the known dependence (observation of meteors in the apex and antapex), as well as a correspondence between the expected characteristics (in time and intensity) of three meteor showers (Perseids, Geminids and Quadrantids) and that had been obtained by the network. Recommendations are also given in the article for additional research aimed at achieving the main goal, namely, expanding information about meteor phenomena, including the estimating of kinematic parameters (velocities, radiants) of meteoroids and their relationship with potentially hazardous asteroids.


Author(s):  
Priti Y. Umratkar ◽  
Harshali Chalfe ◽  
S. K. Totade

The continuously use of mobile phone can be attributed to it can use in any places and thus have become one of the most widely used devices in mobile communication which makes it so important in our lives. The convenience and portability of cellphones has made it possible to be carried everywhere. e.g Churches, lecture halls, medical centers etc. Its benefit can create disturbance in some places when there is continuous beeping or ringtones of cell phones which becomes annoying when such noise is disturbance in areas where silence is required or the use or of mobile phone is restricted or prohibited like Libraries and Study rooms A mobile phone jammer is an instrument used to prevent cellular phones from receiving signals from base station. It is a device that transmit signal on the same frequency at which the GSM system operates, the jamming success when the mobile phones in the area where the jammer is located are disabled. The mobile phone jammer unit is intended for blocking all mobile phone types within designated indoor areas. The mobile Phone Jammer is a 'plug and play' unit, its installation is quick and its operation is easy. Once the mobile Phone Jammer is operating, all mobile phones present within the jamming coverage area are blocked, and cellular activity in the immediate surroundings (including incoming and outgoing calls, SMS, pictures sending, etc.) is jammer. This paper focuses on the design of a cell phone jammer to prevent the usage of mobile communication in restricted areas without interfering with the communication channels outside its range.


2020 ◽  
Vol 8 (5) ◽  
pp. 1423-1428

Unjust provision of channels by base station greatly affects Mobile subscribers. A standard cluster, would be able to serve Many User Equipments (UEs). A typical cluster would contain 3, 7 19, or 21 cells. An issue of ambiguity exist in the demarcation boundary of adjacent cells, thus, radio transmission in a cell from a particular eNode Base Station (eNBs) may leak into neighbouring cells, which causes interferences. Furthermore, the eNBs geographical location is sensitive to obstructions such as towering buildings. The absence of line of sight has a major impact on radio signals, as this would amplify the loss of propagated radio signals, leading to weaken signal strength at the transmitter, that ultimately affecting current the Fixed Channel Allocation (FCA) technique. Despite the effort for fair channel through the current mechanism, users on the edge of the cell experience unfairness. The primary cause for this can be traced to poor received signal power. There are two considered UEs clustered in this simulation scenarios, which is proposed in this paper: (i) random fixed UEs and (ii) 5 step move UEs. A combination of static and dynamic clustering is proposed, thus leading to enhanced channel allocation. From the results, there is a drastic reduction in inter-cell interference, which would increase the performance of the cellular network to become ideal.


2019 ◽  
Vol 18 (1) ◽  
pp. 154-162
Author(s):  
D. V. Chugunin ◽  
A. A. Chernyshov ◽  
M. M. Mogilevsky ◽  
I. L. Moiseenko ◽  
A. A. Petrukovich

The paper shows the possibility to measure plasma density and its fluctuations in the ionosphere on ultra-small space spacecraft using radiophysical methods that allow determining the characteristics of the medium through which radiation is transmitted. It is assumed that each spacecraft will have a navigational satellite receiver, as well as a device for emitting and detecting a signal at two multiple frequencies in the radio band. With this approach, information on plasma density is contained in the received phase difference. Radio receivers and radio transmitters on satellites constantly exchange radio signals and then it is possible to determine the electron concentration and its fluctuations from the phase shift. The authors obtained numerical estimates of the resulting phase difference for different frequencies from 10 MHz to 10 GHz with typical ionospheric parameters depending on the distance between the satellites. Calculations were also made to determine the maximum distance between satellites at which it is possible to receive a signal, provided that the transmitter power is 2 watts.


2020 ◽  
Vol 8 (3) ◽  
Author(s):  
Ellariza Fredeluces ◽  
Arthur Rey Lagura ◽  
Rosalie Reyes ◽  
Nobuaki Kubo

With Multi-GNSS Advanced Demonstration Tool for Orbit and Clock Analysis (MADOCA), a software estimator of precise satellite information, by JAXA, u-blox C099 ZED-F9P and MSJ-3008-GM4-QZS using MADOCA-PPP can be exploited in GNSS applications that require sub-decimeter accuracy without being costly. To evaluate their performance, convergence time and accuracy of solutions are compared to Trimble NetR9, a survey-grade receiver. Post-processed PPP solutions of ZED-F9P were computed using RTKLIB and real-time PPP was provided by the MSJ-3008-GM4-QZS. Results showed ZED-F9P achieved an RMS of 5.28 cm, 2.89 cm, and 9.55 cm in East, North, and Up directions. This means ZED-F9P can be used in applications requiring below 10 cm accuracy even without base station. MSJ-3008-GM4-QZS obtained an RMS of 10.45 cm, 6.27 cm, and 27.56 cm in the same directions. Unlike ZED-F9P, it achieved above 10 cm accuracy in North and Up directions which is due to large errors from cycle slips and jumps in observations. Interestingly, no fixed solutions were achieved between the 20:00 to 21:00 UTC period, although said receiver was able to receive corrections. However, if the observations after 20:00 UTC were removed, the MSJ-3008-GM4-QZS improved to 7.17 cm, 3.58 cm, and 22.32 cm in the same directions.


2019 ◽  
Vol 7 (1) ◽  
pp. 22-33
Author(s):  
Petrisly Perkasa

As been coming ages, modern technology integrates into every life aspect including in field survey. Nowadays, one of the modern technology namely Global Positioning System (GPS). The GPS system was first developed by the US Department of Defense used for both military and civilian purposes. This system is designed to provide threedimensional position, speed, and information about world which is not affected by time and weather. Presently, GPS has been widely used by people all over the world who is need information about position, speed or time. To determine the coordinates of points on earth, the receiver requires at least 4 satellites to capture the signal correctly with the coordinates obtained referring to the global datum such World Geodetic System 1984 (WGS'84). GPS is divided into 3 types: Type of navigation or handheld, generally used in battle field or navigation purposes. Some vehicles have been equipped with GPS for navigation aids by adding a map to guide the rider thus rider know which pathway should be chosen to arrived at the destination. GPS mapping is a GPS tool used to calculate an area or create an important route in transit. Type Mapping has an accuracy level between 1-3 meters and mapping types require a base station serving to receive satellite signals and transmit them to a GPS receiver. Geodetic type is the most meticulous and most sophisticated type than navigation or mapping because it has a level of accuracy below 1 meter. The price of geodetic type is most expensive.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Ayodele Abiola Periola ◽  
Olabisi Emmanuel Falowo

Radio astronomy organisations desire to optimise the terrestrial radio astronomy observations by mitigating against interference and enhancing angular resolution. Ground telescopes (GTs) experience interference from intersatellite links (ISLs). Astronomy source radio signals received by GTs are analysed at the high performance computing (HPC) infrastructure. Furthermore, observation limitation conditions prevent GTs from conducting radio astronomy observations all the time, thereby causing low HPC utilisation. This paper proposes mechanisms that protect GTs from ISL interference without permanent prevention of ISL data transmission and enhance angular resolution. The ISL transmits data by taking advantage of similarities in the sequence of observed astronomy sources to increase ISL connection duration. In addition, the paper proposes a mechanism that enhances angular resolution by using reconfigurable earth stations. Furthermore, the paper presents the opportunistic computing scheme (OCS) to enhance HPC utilisation. OCS enables the underutilised HPC to be used to train learning algorithms of a cognitive base station. The performances of the three mechanisms are evaluated. Simulations show that the proposed mechanisms protect GTs from ISL interference, enhance angular resolution, and improve HPC utilisation.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zhaohui Zhang ◽  
Jing Li ◽  
Qian Liu

The observed values of time of arrival (TOA) for the radio signals between the target and the wireless communication base stations are mainly affected by signal non-line-of-sight (NLOS) propagation in target location. TOA with NLOS makes a lot of signal noises and propagation delays, that is, location errors. For the first time, this paper focuses on the problem of modifying the Z-axis location coordinates in three-dimensional (3D) target location. A novel algorithm is proposed by establishing the modified least squares 3D location model for the accurate target location. Meanwhile, an optimal base station selection strategy is proposed by using the spectral clustering algorithm, which is based on the spatial distribution of the base stations. Compared with the existing algorithms, the proposed algorithm in this paper has better performance on the accurate target 3D location in real scenes, which has a high value of practical application. The simulations illustrate that the location error of the proposed algorithm is smaller than those of other existing algorithms based on the same simulation data and conditions.


Sign in / Sign up

Export Citation Format

Share Document