scholarly journals The Study of Specific Surface Area from Carbonat Rock Using Micro Computed Tomography (µ-CT)

Author(s):  
Mahendra Risky Habibi ◽  
Thaqibul Fikri Niyartama

Carbonate rocks have been scanned and reconstructed in order to get the value of specific surface area. We get it from the reservoir at a depth of 1000 metres in South Sumatra. Skyscan Micro-CT 1173 is used for throwing and thresholding images using Global Otshu to characterize rocks. Our calculation result shows that the value of specific surface area of carbonate rocks show results 100 to 10-2 using the programming Algorithm Fuzzy C-Mean. The difference in values far enough that it can be assumed that the carbonate rocks have a heterogeneous surface area. In addition, histogram model shows the similarity of the sample. The macro sample has the same characteristics as the micro sample.

Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1064
Author(s):  
Masanori Kohno

Considering the relevance of clay mineral-bearing geomaterials in landslide/mass movement hazard assessment, various engineering projects for resource development, and stability evaluation of underground space utilization, it is important to understand the permeability of these clay mineral-based geomaterials. However, only a few quantitative data have been reported to date regarding the effects of the clay mineral type and hydraulic gradient on the permeability of clay mineral materials. This study was conducted to investigate the permeability of clay mineral materials based on the clay mineral type, under different hydraulic gradient conditions, through a constant-pressure permeability test. Comparative tests have revealed that the difference in the types of clay mineral influences the swelling pressure and hydraulic conductivity. In addition, it has been found that the difference in water pressure (hydraulic gradient) affects the hydraulic conductivity of clay mineral materials. The hydraulic conductivity has been found to be closely associated with the specific surface area of the clay mineral material. Furthermore, the hydraulic conductivity value measured is almost consistent with the value calculated theoretically using the Kozeny–Carman equation. Moreover, the hydraulic conductivity is also found to be closely associated with the hydrogen energy, calculated from the consistency index of clay. This result suggests that the hydraulic conductivity of clay mineral materials can be estimated based on the specific surface area and void ratio, or consistency index of clay.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1230
Author(s):  
Fabien Léonard ◽  
Zhen Zhang ◽  
Holger Krebs ◽  
Giovanni Bruno

The mixture of ammonium nitrate (AN) prills and fuel oil (FO), usually referred to as ANFO, is extensively used in the mining industry as a bulk explosive. One of the major performance predictors of ANFO mixtures is the fuel oil retention, which is itself governed by the complex pore structure of the AN prills. In this study, we present how X-ray computed tomography (XCT), and the associated advanced data processing workflow, can be used to fully characterise the structure and morphology of AN prills. We show that structural parameters such as volume fraction of the different phases and morphological parameters such as specific surface area and shape factor can be reliably extracted from the XCT data, and that there is a good agreement with the measured oil retention values. Importantly, oil retention measurements (qualifying the efficiency of ANFO as explosives) correlate well with the specific surface area determined by XCT. XCT can therefore be employed non-destructively; it can accurately evaluate and characterise porosity in ammonium nitrate prills, and even predict their efficiency.


2014 ◽  
Vol 931-932 ◽  
pp. 421-425 ◽  
Author(s):  
Son Tung Pham ◽  
William Prince

The objective of this work was to examine the microstructural changes caused by the carbonation of normal mortar. Samples were prepared and subjected to accelerated carbonation at 20°C, 65% relative humidity and 20% CO2concentration. The evolutions of the pore size distribution and the specific surface area during carbonation were calculated from the adsorption - desorption isotherms of water vapour and nitrogen. Conflicts observed in the results showed that the porous domains explored by these two methods are not the same due to the difference in molecular sizes of nitrogen and water. These two techniques therefore help to complementarily evaluate the effects of carbonation. The study also helped to explain why results in the literature diverge greatly on the influence of carbonation on specific surface area.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1739 ◽  
Author(s):  
Yongwei Song ◽  
Yelin Liu ◽  
Heru Wang

Schwertmannite is an environmental mineral material that can promote the natural passivation of heavy metal elements, thereby reducing environmental pollution from toxic elements. However, the fundamental reason for the difference between the chemically (H2O2-FeSO4) and biologically (Acidithiobacillus ferrooxidans-FeSO4) synthesized schwertmannite is still unclear. In this study, X-ray diffraction, scanning electron microscopy, the Brunauer–Emmett–Teller method, and X-ray fluorescence spectrometry were used to compare the structure, specific surface area, and elemental composition of schwertmannite synthesized by biological and chemical methods. The removal capacity of As(III) by the two kinds of schwertmannite and the effects of extracellular polymeric substances (EPS) on biogenetic schwertmannite were also investigated. At a consistent Fe2+ oxidation efficiency, the chemical method synthesized more schwertmannite than the biological method over a 60-h period. The biosynthesized schwertmannite had a “chestnut shell” shape, with a larger particle size and specific surface than the chemically synthesized schwertmannite, which was relatively smooth. The saturated adsorption capacities of the biologically and chemically synthesized schwertmannite were 117.0 and 87.0 mg·g−1, respectively. After exfoliation of the EPS from A. ferrooxidans, the biosynthesized schwertmannite displayed a “wool ball” shape, with rough particle surfaces, many microporous structures, and a larger specific surface area. The schwertmannite yield also increased by about 45% compared with that before exfoliation, suggesting that the secretion of EPS by A. ferrooxidans can inhibit the formation of schwertmannite.


2018 ◽  
Author(s):  
Adam Schneider ◽  
Mark Flanner ◽  
Roger De Roo

Abstract. Snow specific surface area (SSA) is an important physical property that directly affects solar absorption of snow cover. Instrumentation to measure snow SSA is commercially available for purchase, but these instruments are costly and/or remove and destroy snow samples during data collection. To obtain rapid, repeatable, and in situ surface snow SSA measurements, we mounted infrared light emitting diodes and photodiode detectors into a 17 cm diameter black styrene dome. By flashing light emitting diodes and measuring photodiode currents, we obtain accurate 1.30 and 1.55 micron bidirectional reflectance factors (BRFs). We compare measured snow BRFs with X-ray micro computed tomography scans and Monte Carlo photon modeling to relate BRFs to snow SSA. These comparisons show an exponential relationship between snow 1.30 micron BRFs and SSA from which we calculate calibration functions to approximate snow SSA. The techniques developed here enable rapid retrieval of snow SSA by a new instrument called the Near-Infrared Emitting and Reflectance-Monitoring Dome (NERD).


2014 ◽  
Vol 8 (4) ◽  
pp. 1139-1148 ◽  
Author(s):  
J.-C. Gallet ◽  
F. Domine ◽  
M. Dumont

Abstract. The specific surface area (SSA) of snow can be used as an objective measurement of grain size and is therefore a central variable to describe snow physical properties such as albedo. Snow SSA can now be easily measured in the field using optical methods based on infrared reflectance. However, existing optical methods have only been validated for dry snow. Here we test the possibility to use the DUFISSS instrument, based on the measurement of the 1310 nm reflectance of snow with an integrating sphere, to measure the SSA of wet snow. We perform cold room experiments where we measure the SSA of a wet snow sample, freeze it and measure it again, to quantify the difference in reflectance between frozen and wet snow. We study snow samples in the SSA range 12–37 m2 kg−1 and in the mass liquid water content (LWC) range 5–32%. We conclude that the SSA of wet snow can be obtained from the measurement of its 1310 nm reflectance using three simple steps. In most cases, the SSA thus obtained is less than 10 {%} different from the value that would have been obtained if the sample had been considered dry, so that the three simple steps constitute a minor correction. We also run two optical models to interpret the results, but no model reproduces correctly the water–ice distribution in wet snow, so that their predictions of wet snow reflectance are imperfect. The correction on the determination of wet snow SSA using the DUFISSS instrument gives an overall uncertainty better than 11%, even if the LWC is unknown. If SSA is expressed as a surface to volume ratio (e.g., in mm−1), the uncertainty is then 13% because of additional uncertainties in the determination of the volume of ice and water when the LWC is unknown.


2007 ◽  
Vol 6 (4) ◽  
pp. 7290.2007.00022 ◽  
Author(s):  
Cristian T. Badea ◽  
Laurence W. Hedlund ◽  
Julie F. Boslego Mackel ◽  
Lan Mao ◽  
Howard A. Rockman ◽  
...  

The purpose of this study was to investigate the use of micro–computed tomography (micro-CT) for morphological and functional phenotyping of muscle LIM protein (MLP) null mice and to compare micro-CT with M-mode echocardiography. MLP null mice and controls were imaged using both micro-CT and M-mode echocardiography. For micro-CT, we used a custom-built scanner. Following a single intravenous injection of a blood pool contrast agent (Fenestra VC, ART Advanced Research Technologies, Saint-Laurent, QC) and using a cardiorespiratory gating, we acquired eight phases of the cardiac cycle (every 15 ms) and reconstructed three-dimensional data sets with 94-micron isotropic resolution. Wall thickness and volumetric measurements of the left ventricle were performed, and cardiac function was estimated. Micro-CT and M-mode echocardiography showed both morphological and functional aspects that separate MLP null mice from controls. End-diastolic and -systolic volumes were increased significantly three- and fivefold, respectively, in the MLP null mice versus controls. Ejection fraction was reduced by an average of 32% in MLP null mice. The data analysis shows that two imaging modalities provided different results partly owing to the difference in anesthesia regimens. Other sources of errors for micro-CT are also analyzed. Micro-CT can provide the four-dimensional data (three-dimensional isotropic volumes over time) required for morphological and functional phenotyping in mice.


2021 ◽  
Author(s):  
Elliott Goff ◽  
Federica Buccino ◽  
Chiara Bregoli ◽  
Jonathan P. McKinley ◽  
Basil Aeppli ◽  
...  

ABSTRACTUltra-high-resolution imaging of the osteocyte lacuno-canalicular network (LCN) three-dimensionally (3D) in a high-throughput fashion has greatly improved the morphological knowledge about the constituent structures – positioning them as potential biomarkers. Technologies such as serial focused ion beam/scanning electron microscopy (FIB/SEM) and confocal scanning laser microscopy (CLSM) can image in extremely high resolution, yet only capture a small number of lacunae. Synchrotron radiation computed tomography (SR-CT) can image with both high resolution and high throughput but has a limited availability. Desktop micro-computed tomography (micro-CT) provides an attractive balance: high-throughput imaging on the micron level without the restrictions of SR-CT availability. Over the past decade, desktop micro-CT has been used to image osteocyte lacunae in a variety of animals, yet few studies have employed it to image human lacunae using clinical biopsies.In this study, accuracy, precision, and sensitivity of large-scale quantification of human osteocyte lacunar morphometries were assessed by ultra-high-resolution desktop micro-computed tomography. For this purpose, thirty-one transiliac human bone biopsies containing trabecular and cortical regions were imaged using ultra-high-resolution desktop micro-CT at a nominal isotropic voxel resolution of 1.2µm. The resulting 3D images were segmented, component labeled, and the following morphometric parameters of 7.71 million lacunae were measured: Lacunar number (Lc.N), density (Lc.N/BV), porosity (Lc.TV/BV), volume (Lc.V), surface area (Lc.S), surface area to volume ratio (Lc.S/Lc.V), stretch (Lc.St), oblateness (Lc.Ob), sphericity (Lc.Sr), equancy (Lc.Eq), and angle (Lc.θ).Accuracy was quantified by comparing automated lacunar segmentation to manual segmentation. Mean true positive rate (TPR), false positive rate (FPR), and false negative rate (FNR) were 89.0%, 3.4%, and 11.0%, respectively. Regarding the reproducibility of lacunar morphometry from repeated measurements, precision errors were low (0.2 – 3.0%) and intraclass correlation coefficients were high (0.960 – 0.999). Significant differences between cortical and trabecular regions (p<0.001) existed for Lc.N/BV, Lc.TV/BV, local lacunar surface area (<Lc.S>), and local lacunar volume (<Lc.V>), all of which demonstrate the sensitivity of the method and are possible biomarker candidates. This study provides the rigorous foundation required for future large-scale morphometric studies using ultra-high-resolution desktop micro-CT and high-throughput analysis of millions of osteocyte lacunae in human bone samples. Furthermore, the validation of this technology for imaging of human lacunar properties establishes the quality and reliability required for the accurate, precise, and sensitive assessment of osteocyte morphometry in clinical bone biopsies.


2018 ◽  
Vol 14 (4) ◽  
pp. 735-743 ◽  
Author(s):  
B. Chen ◽  
Peisheng Liu ◽  
J.H. Chen

Purpose With the nickel foam made by the technique of electrodeposition on polymer foam, the purpose of this paper is to investigate the influence of several deferent processes on the surface morphology and the specific surface area of this porous product. Design/methodology/approach The surface morphologies of the nickel foam were examined by SEM. The specific surface area of the porous product was measured by gas (N2) permeability method and also calculated by the reported formula. Findings The nickel foam from sintering in NH3 decomposition atmosphere at 850°C will achieve the same specific surface area as that at 980°C, whether this porous structure after electrodeposition comes through direct sintering in NH3 decomposition atmosphere, or through burning in air at 600°C for 4 min beforehand then the same reductive sintering. Originality/value There have been some studies on the preparation and application of nickel foam, but few works focus on the processing influence on the specific surface of this porous product. The present work provides the investigations on the difference of the product made under different producing conditions, and the influence of several deferent processes on the specific surface area of the product.


Sign in / Sign up

Export Citation Format

Share Document