Zone of Technogenic Pollution of the Pervouralsk-Revda Industrial Hub: Soil Assessment and Land Use Issues

2020 ◽  
Vol 11 (5) ◽  
pp. 1054
Author(s):  
Alexey S. GUSEV ◽  
Yuri L. BAYKIN ◽  
Nadezhda V. VASHUKEVICH ◽  
Alexey A. BELICHEV

The influence of heavy metals pollution of soils and lands in the zone of metallurgical plants influence in the Sverdlovsk region (Russia) was analyzed. Sredneuralsk Copper Smelting Plant (SUMZ) is an environmental polluter with copper, lead, zinc, cadmium and sulfur oxides, nitrogen and hydrogen fluoride. Pervouralsk plant for production of chromium-containing materials ("Crompick") generates emissions of chromium compounds and other heavy metals. Environmental risk was assessed using the Zc pollution index adopted by the Russian regulations and the soil buffering index to heavy metals. The data on the reaction of different organization-levelled bioindicators in the system “polluted soil-biota” is given. The materials obtained during assessment of the arable soils contamination in the zone of Pervouralsk-Revda industrial hub showed that the levels of concentration of heavy metals in soils to a large extent correlated with both the composition of industrial emissions and the range of sampling from pollution sources. The maximum level of contamination (Zc index 263-546) was detected in arable soils at a distance of 1.5 km from the SUMZ. The "Crompick" enterprise has a less significant identified impact on the contamination of arable soils. “Extremely dangerous” soil contaminations (index Zc 134) were detected only at a distance of 0.5 km from it. The results of our model experiments allowed us to conclude that the safest level of pollution, when the critical concentration of heavy metals does not accumulate in plants, is the Zc index value below 12. In accordance with the current level of pollution in the survey area, restrictions on the main land use categories were proposed.

2011 ◽  
Vol 71-78 ◽  
pp. 3033-3036 ◽  
Author(s):  
Lian Feng Wang ◽  
Ying Xia Bai ◽  
Shi Nan Gai

Heavy metals (Zn, Cu, Pb and Cd) concentrations using atomic absorption spectrometry were investigated in roadside surface (0-20 cm) and sub-surface (20-40 cm) arable soils along Shangzhi section of Harbin-Suifenhe railway, Heilongjiang province, northeastern China. The soil environmental quality on the base of the environmental background value criteria were evaluated respectively by single-factor pollution index (Pi) and Nemerow multi-factor pollution index (Pij) method according to the first grade of Standards for Soil Environmental Quality of China (GB15618-1995). Except for Zn, concentrations of Cu, Pb and Cd in surface soil (0-20cm) were higher than that of sub-surface soil (20-40cm). Concentrations of Zn (106~293 mg kg-1), Cu (17.9~22.4 mg kg-1), Pb (18.2~24.6 mg kg-1) and Cd (64~386 µg kg-1) were lower than the values in China National Standards Grade II. The highest Pi of Zn, Cu, Pb and Cd are 2.93, 0.64, 0.70 and 1.42, respectively. The highest Pij was presented in the 50-m distance soils.The results suggested heavy metals in soils 50-meter distance from railway were higher than that of 10- and 100-meter distance.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Saurabh Mishra ◽  
Amit Kumar ◽  
Prabhakar Shukla

AbstractThe Hindon River is a major freshwater resource predominantly for the rural population of the western region in Uttar Pradesh, India. The river receives industrial wastewaters having heavy metals concentration at potentially toxic levels. The focus of this study is to estimate the heavy metals (such as Fe, Cu, Zn and Cr) contamination in the Hindon River using Nemerow pollution index followed by environmetrics to identify their pollution source. The water samples are collected from 28 industrial discharge sites in the river to analyze metals concentration during pre- and post-monsoon months. The estimated Nemerow pollution index value is more than 3 indicating severely contaminated river water. Principal component analysis results confirm that Fe and Cu are the major contaminants in the river, which indicates the direct input of wastewater from electroplating industries. Therefore, it is suggested that a strategic eco-conservation plan should be formulated and implemented in advance to prevent the deterioration of the water quality and aquatic life.


2019 ◽  
Vol 20 (1) ◽  
pp. 73
Author(s):  
Asep Nurohmat Majalis ◽  
Sri Lusiani ◽  
Yeni Novitasari

ABSTRACTThe processing of gold by cyanidation has an impact on the release of free cyanide into the environment contained in the tailings. Free cyanide is very dangerous because it has very high toxicity. The process to remove free cyanide from tailings is the oxidation-precipitation using a mixture of sulfur and oxygen catalyzed by copper (II). This process can reduce the concentration of free cyanide as well as heavy metals. Free cyanide is oxidized to cyanate and heavy metals are deposited as metal-hydroxide. The optimum parameter of these methods on tailing cyanidation from gold ore Lebak Situ Village-Lebak Gedong District-Lebak Regency-Banten province are the ratio of the weight of SO2/CN- is 7; the catalyst dose is 75 mg/L; pH is 9 and the processing time is 4 hours. Application tests of the optimum parameter were able to reduce free cyanide concentration from 95.8 mg/L to 0.25 mg/L. Wastewater from the processing with this process has fulfilled the specified Quality Standards. The wastewater pollution index value before the treatment process is 136.32, changing to 0.36 after processing. These changes indicate that the oxidation-precipitation process has been able to change the condition of cyanidation wastewater from heavily polluted to better conditions.Keywords: cyanidation, tailing, oxidation, optimum parameter, aplication test, pollution index ABSTRAKPengolahan emas dengan sianidasi berdampak pada pelepasan sianida bebas ke lingkungan yang terkandung di dalam tailing. Sianida bebas sangat berbahaya karena mempunyai toksisitas yang sangat tinggi. Salah satu proses untuk menghilangkan sianida bebas dari tailing adalah oksidasi-presipitasi menggunakan campuran gas sulfur dan oksigen terkatalisis tembaga (II). Proses ini mampu menurunkan konsentrasi sianida bebas sekaligus logam berat.  Sianida bebas dioksidasi menjadi sianat dan logam berat diendapkan sebagai logam-hidroksida. Parameter optimum proses tersebut pada tailing sianidasi bijih emas Lebak Situ Kecamatan Lebak Gedong Kabupaten Lebak Provinsi Banten adalah rasio berat SO2/CN- 7; dosis katalis 75 mg/L; pH pengolahan 9 dan waktu pengolahan 4 jam. Uji aplikasi parameter optimum tersebut mampu menurunkan konsentrasi sianida bebas dari 95,8 mg/L menjadi 0,25 mg/L. Air limbah hasil pengolahan dengan proses tersebut telah memenuhi Baku Mutu yang ditetapkan. Nilai indeks pencemaran air limbah sebelum proses pengolahan adalah 136,32 berubah menjadi 0,36 setelah dilakukan proses pengolahan. Perubahan tersebut menunjukkan bahwa proses oksidasi-presipitasi telah mampu mengubah kondisi air limbah sianidasi dari tercemar berat menjadi kondisi lebih baik.Kata kunci: sianidasi, tailing, oksidasi, parameter optimum, uji aplikasi, indeks pencemaran


2021 ◽  
Vol 14 (1) ◽  
pp. 100-110
Author(s):  
U. Bawa ◽  
A. Ahmad ◽  
J.N. Ahmad ◽  
A.G. Ezra

Intensive use of agrochemicals has led to build of heavy metals in the soil ecosystem and their transfer to edible parts of crops. This study was aimed to determine the heavy metals (Cd, Pb, Cr, Cu and Zn) concentrations in some twenty commonly used pesticides in northern Nigeria, and health risk associated from the consumption of food crops fumigated with these pesticides as the only source of metal contamination. Heavy metals content in pesticides, food crops and soils were analyzed after acid digestion using atomic absorption spectrometry. Traces of heavy metals (Cd, Pb, Cr, Cu and Zn) were detected in most of the pesticides. The concentrations of heavy metals in crops fumigated with pesticides ranged from 0.33-4.68, 1.75-38.08, 0.67-16.83, 9.01-436.75, 0.17-20.80mg/kg for Cd, Pb, Cr, Cu, and Zn respectively. The mean concentrations of Cd, Pb, and Cr in all the crops were above WHO, (2019) permissible limit. Heavy metals in soils of corresponding crops were below the permissible limits by UNEP, (2013) and NESREA, (2011). Bioaccumulation factor BAF showed high BAF>1 for Cu and Pb in all the studied crops,while pollution index value revealed contamination for Cd and Pb in all the studied crops. Hazard quotient showed potential health risk from the consumption of only Capsicumannuum for Pb. However, consumers may experience advance health risk through the consumption of Oryza sativa, Zea mays, Solanumlycopersicum, Capsicumfrustescens for all metals (Hazard index). Hence, there is the need for screening of heavy metals in pesticides and monitoring of metals contents in food crops.


Author(s):  
Defri Yona ◽  
Syarifah Hikmah Julinda Sari ◽  
Anedathama Kretarta ◽  
Citra Ravena Putri Effendy ◽  
Misba Nur Aini ◽  
...  

This study attempted to analyze the distribution and contamination status of heavy metals (Cu, Fe and Zn) along western coast of Bali Strait in Banyuwangi, East Java. Bali Strait is one of the many straits in Indonesia with high fisheries activities that could potentially contributed to high heavy metal pollution. There were five sampling areas from the north to south: Pantai Watu Dodol, Pantai Kalipuro, Ketapang Port, Pantai Boom and Muncar as the fish landing area. Heavy metal pollution in these locations comes from many different activities such as tourism, fish capture and fish industry and also domestic activities. Contamination factor (CF), geo-accumulation index (Igeo) and enrichment factor (EF) of each heavy metal were calculated to obtain contamination status of the research area. The concentrations of Fe were observed the highest (1.5-129.9 mg/kg) followed by Zn (13.2-23.5 mg/kg) and Cu (2.2-7.8 mg/kg). The distribution of Cu, Fe and Zn showed variability among the sampling locations in which high concentrations of Cu and Zn were higher in Ketapang Port, whereas high concentration of Fe was high in almost all sampling locations. According to the pollution index, contamination factors of Cu, Fe and Zn were low (CF < 1 and Igeo < 1). However, high index of EF (> 50) showed high influence of the anthropogenic activities to the contribution of the metals to the environment. This could also because of the high background value used in the calculation of the index due to the difficulties in finding background value from the sampling areas.Keywords: heavy metals, pollution index, contamination factor, geo-accumulation index, Bali Strait


Author(s):  
Wayan Budiarsa Suyasa ◽  
Sri Kunti Pancadewi G. A ◽  
Iryanti E. Suprihatin ◽  
Dwi Adi Suastuti G. A.

In order to maintain the environmental carrying capacity of coastal tourism, this research was conducted to determine the condition of river water environmental pollution in the Petitenget beach area and pollutant source activities. Determination of water quality is carried out by analyzing the water quality taken at several sampling points in the four rivers that lead to the Petitenget beach. Determined the pollution index value (IP) of the physical chemical and biological pollution parameters. The results showed that the four rivers that flow into the Petitenget Beach area had been contaminated with indications of pH, BOD, COD, ammonia, Coliform and E. coli which exceeded water quality category III class quality (PerGub Bali No 16 Year 2016). The four rivers are included in the criteria of severe contamination. The four rivers have experienced physical damage or structural changes that have very high discharge fluctuations both in quantity and quality. Slimy basic structure, smelly and slum aesthetic waters. While the indication of the impact of pollution is waste water which is directly discharged into the river from hotels, restaurants, homestays, commercial centers and settlements.


Author(s):  
Yujuan Gao ◽  
Jianli Jia ◽  
Beidou Xi ◽  
Dongyu Cui ◽  
Wenbing Tan

The heavy metal pollution induced by agricultural land use change has attracted great attention. In this study, the divergent response of bioavailability of heavy metals in rhizosphere soil to different...


Author(s):  
Songtao Wang ◽  
Zongjun Gao ◽  
Yuqi Zhang ◽  
Hairui Zhang ◽  
Zhen Wu ◽  
...  

This study investigated the characteristics and sources of heavy metals in a soil–ginger system and assessed their health risks. To this end, 321 topsoil samples and eight soil samples from a soil profile, and 18 ginger samples with root–soil were collected from a ginger-planting area in the Jing River Basin. The average concentration of heavy metals in the topsoil followed the order: Cr > Zn > Pb > Ni > Cu > As > Cd > Hg. In the soil profile, at depths greater than 80 cm, the contents of Cr, Ni, and Zn tended to increase with depth, which may be related to the parent materials, whereas As and Cu contents showed little change. In contrast, Pb content decreased sharply from top to bottom, which may be attributable to external environmental and anthropogenic factors. Multivariate statistical analysis showed that Cr, Ni, Cu, Zn, and Cd contents in soil are affected by natural sources, Pb and As contents are significantly affected by human activities, and Hg content is affected by farmland irrigation. Combined results of the single pollution index (Pi), geo-accumulation index (Igeo), and potential ecological risk assessment (Ei and RI) suggest that soil in the study area is generally not polluted by heavy metals. In ginger, Zn content was the highest (2.36 mg/kg) and Hg content was the lowest (0.0015 mg/kg). Based on the bioconcentration factor, Cd and Zn have high potential for enrichment in ginger. With reference to the limit of heavy metals in tubers, Cr content in ginger exceeds the standard in the study area. Although Cr does not accumulate in ginger, Cr enrichment in soil significantly increases the risk of excessive Cr content in ginger.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1312
Author(s):  
Daniel Wicke ◽  
Andreas Matzinger ◽  
Hauke Sonnenberg ◽  
Nicolas Caradot ◽  
Rabea-Luisa Schubert ◽  
...  

The main aim of this study was a survey of micropollutants in stormwater runoff of Berlin (Germany) and its dependence on land-use types. In a one-year monitoring program, event mean concentrations were measured for a set of 106 parameters, including 85 organic micropollutants (e.g., flame retardants, phthalates, pesticides/biocides, polycyclic aromatic hydrocarbons (PAH)), heavy metals and standard parameters. Monitoring points were selected in five catchments of different urban land-use types, and at one urban river. We detected 77 of the 106 parameters at least once in stormwater runoff of the investigated catchment types. On average, stormwater runoff contained a mix of 24 µg L−1 organic micropollutants and 1.3 mg L−1 heavy metals. For organic micropollutants, concentrations were highest in all catchments for the plasticizer diisodecyl phthalate. Concentrations of all but five parameters showed significant differences among the five land-use types. While major roads were the dominant source of traffic-related substances such as PAH, each of the other land-use types showed the highest concentrations for some substances (e.g., flame retardants in commercial area, pesticides in catchment dominated by one family homes). Comparison with environmental quality standards (EQS) for surface waters shows that 13 micropollutants in stormwater runoff and 8 micropollutants in the receiving river exceeded German quality standards for receiving surface waters during storm events, highlighting the relevance of stormwater inputs for urban surface waters.


Sign in / Sign up

Export Citation Format

Share Document