scholarly journals Removal of Methylene Blue Using Used Paper Powder

2019 ◽  
Vol 22 (1) ◽  
pp. 23-28
Author(s):  
Ghina Labiebah ◽  
Gunawan Gunawan ◽  
Muhammad Cholid Djunaidi ◽  
Abdul Haris ◽  
Didik Setiyo Widodo

Methylene blue removal by adsorption method had been done in batch method using adsorbent of used paper powder. Adsorption parameters covering adsorbent doses, contact times, pH, adsorbate concentrations and adsorption isotherm as well as desorption study of the absorbed methylene blue were evaluated. The results showed the highest adsorption of methylene blue was obtained at an optimum adsorbent dose, for 30 min at pH > 9. The maximum adsorption capacity of 30.77 mg/g was obtained with Langmuir isotherm model. While the effective methylene blue desorption on the used paper powder adsorbent was obtained c.a. 0.27 mg/g at pH 1.

2021 ◽  
Vol 16 (4) ◽  
pp. 869-880
Author(s):  
Normah Normah ◽  
Novie Juleanti ◽  
Patimah Mega Syah Bahar Nur Siregar ◽  
Alfan Wijaya ◽  
Neza Rahayu Palapa ◽  
...  

Modification of the layered double hydroxide of CuAl-LDHs by composite with hydrochar (HC) to form CuAl-HC LDH. Material characterization by XRD, FT-IR and SEM analysis was used to prove the success of the modification. The characterization of XRD and FT-IR spectra showed similarities to pure LDH and HC. Selectivity experiments were carried out by mixing malachite green, methylene blue, rhodamine-B, methyl orange, and methyl red to produce the most suitable methyl blue dye for CuAl-LDH, HC and CuAl-HC adsorbents. The effectiveness of CuAl-HC LDH as adsorbent on methylene blue adsorption was tested through several influences such as adsorption isotherm, thermodynamics, and adsorbent regeneration. CuAl-HC LDH adsorption isotherm data shows that the adsorption process tends to follow the Langmuir isotherm model with a maximum adsorption capacity of 175.439 mg/g with a threefold increase compared to pure LDH. The effectiveness of the adsorbent for repeated use reaches five cycles as evidenced by the maximum capacity regeneration data reaching 82.2%, 79.3%, 77.9%, 76.1%, and 75.8%. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


2018 ◽  
Vol 36 (3-4) ◽  
pp. 1112-1143 ◽  
Author(s):  
Mohammad Hossein Karimi Darvanjooghi ◽  
Seyyed Mohammadreza Davoodi ◽  
Arzu Y Dursun ◽  
Mohammad Reza Ehsani ◽  
Iman Karimpour ◽  
...  

In this study, treated eggplant peel was used as an adsorbent to remove Pb2+ from aqueous solution. For this purpose batch adsorption experiments were performed for investigating the effect of contact time, pH, adsorbent dose, solute concentrations, and temperature. In order to assess adsorbent’s physical and chemical properties, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy were used. The results showed that the adsorption parameters for reaching maximum removal were found to be contact time of 110 min, adsorbent dose of 0.01 g/ml, initial lead(II) concentration of 70 ppm, pH of 4, and temperature of 25°C. Moreover, for the experiments carried out at pH > 4 the removal occurred by means of significant precipitation as well as adsorption. Furthermore, these results indicated that the adsorption followed pseudo-second-order kinetics model implying that during the adsorption process strong bond between lead(II) and chemical functional groups of adsorbent surface took place. The process was described by Langmuir model (R2 = 0.99; maximum adsorption capacity 88.33 mg/g). Also thermodynamics of adsorption was studied at various temperatures and the thermodynamic parameters including equilibrium constant (K), standard enthalpy change, standard entropy change, and standard free energy changes were obtained from experimental data.


2017 ◽  
Vol 76 (11) ◽  
pp. 3126-3134 ◽  
Author(s):  
Ari Rahman ◽  
Naoyuki Kishimoto ◽  
Takeo Urabe ◽  
Kazuki Ikeda

Abstract Colored effluent and a large amount of sludge are major pollutant sources derived from textile industry activity. In this research, the idea for converting textile sludge into a potential adsorbent was conducted through a carbonization process in order to solve the colored effluent problem. Textile sludge was carbonized at a temperature ranging from 400 to 800 °C in the absence of oxygen. Maximum adsorption capacity of carbonized sludge for methylene blue removal reached 60.30 mg/g when the sludge was carbonized at 600 °C with specific surface area of 138.9 m2/g and no significant alteration was observed until 800 °C. Experimental research by using a real wastewater also showed that there was almost no disruption during adsorption of methylene blue into surface of carbonized sludge. While reactivation process revealed that the regeneration of carbonized sludge was applicable by secondary heating at the same carbonization temperature. Furthermore, the application of this research demonstrated that the carbonized textile sludge was a good adsorbent for methylene blue removal and had a capability to be reactivated.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Amal Touina ◽  
Safia Chernai ◽  
Bouhameur Mansour ◽  
Hafida Hadjar ◽  
Abdelkader Ouakouak ◽  
...  

AbstractA series of naturally occurring diatomaceous earth samples from Ouled Djilali, Mostaganem (Lower Chelif basin, Algeria northwestern), were investigated, which are characterized by the expansion and evolution during the Messinian age. Four varieties of diatomite were distinguished, characterized, and successfully used to adsorb methylene blue dye in aqueous medium. Several properties and characteristics of diatomite have been outlined using analytical methods such as X-ray fluorescence spectrometry, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption–desorption (BET), and scanning electron microscopy (SEM), as well as other complementary analysis tests. Results showed that silica and calcium carbonates were the main constituents of the diatomite samples (ranging between 32.8 and 61.5% for SiO2; and 13.8–25.9% for CaO), with a slight difference in chemical composition between selected samples. Typical for all diatomite samples, the XRD analysis suggests a high mass quantity of amorphous phase (Opal); high content of crystal phase was also registered. FTIR allowed determining the basic characteristic silica bands regarding diatomite samples. While the BET and SEM investigations revealed that the studied diatomite material has a highly porous structure and was very rich in diatoms. The maximum adsorption capacity of methylene blue that was calculated from the Langmuir isotherm model was 116.59 mg/g (for Ouled Djilali: OD05 sample) at 25 °C and pH 7.0. The diatomite from Mostaganemian (Ouled Djilali) deposit may find promising applications as low-cost adsorbent for dyes removal from water.


2015 ◽  
Vol 752-753 ◽  
pp. 251-256
Author(s):  
Megat Ahmad Kamal Megat Hanafiah ◽  
Noor Fhadzilah Mansur ◽  
Wan Mohd Nazri Wan Ab Rahman ◽  
Mardhiah Ismail

The potential of sodium hydroxide (NaOH) modified Petai Belalang (Leucaenaleucocephala) leaf powder as a biosorbent for methylene blue removal from aqueous solutions was investigated. Adsorption parameters studied include initial dye concentration, pH, dosage, kinetics and isotherms. The pHzpc of chemically treated Leucaenaleucocephala leaf powder was 7.50 and adsorption equilibrium time was achieved after 60 min. The kinetic data was best represented by the pseudo-second order model. The maximum adsorption capacity predicted from Langmuir model was 208.33 mg g-1. This work indicated that NaOH treated Leucaenaleucocephala leaf powder can be an attractive biosorbent for MB removal from diluted industrial wastewater.


2021 ◽  
Vol 8 (3) ◽  
pp. 194-201
Author(s):  
Maya Rahmayanti ◽  
Sri Juari Santosa ◽  
Sutarno Sutarno ◽  
Astuti Paweni

In recent years gallic acid has been developed as an AuCl4- adsorbent-reducing agent. In this research, gallic acid was modified with magnetite by sonochemical method (GA-Fe3O4), and its effectiveness as an AuCl4- adsorbent was studied. GA-Fe3O4 was synthesized through one-stage (GA-Fe3O4-SK1) and two-stage (GA-Fe3O4-SK2) methods. The effectiveness of GA-Fe3O4 was studied through optimization studies on pH, time, kinetics, and isotherm adsorption of AuCl4-. The adsorption method used was the batch method in the pH range 2-7. While the kinetics model used was the Lagergren and Ho kinetics model. The adsorption isotherm model used was the Freundlich and Langmuir isotherm model. The results showed that the optimum pH conditions for adsorption of AuCl4- on GA-Fe3O4 occurred at pH 3. Adsorption of AuCl4- on GA-Fe3O4-SK1 and GA-Fe3O4-SK2 both followed the Ho kinetic model, while the adsorption isotherm followed the Freundlich isotherm model with values KF were 0.041 and 0.034 mol/g respectively.


Author(s):  
Priyanka Sharma ◽  
Kushal Qanungo

Mesoporous clay-starch ceramic pellets have been prepared using silica-rich low fire clay and potato starch as a pore-forming agent. The ceramic pellets prepared using 30% starch, showed the highest porosity and lowest compressive strength among all the different pellets. Batch mode studies using the pellets showed higher methylene blue adsorption capacity with an increase in time and increased initial dye concentration. The adsorption capacity was found to decrease with increasing pellet dose, while pH had a negligible effect on methylene blue removal which makes them a suitable adsorbent in both acidic and basic mediums. Adsorption isotherm analysis of the process was followed by the Langmuir adsorption isotherm whereas the kinetics analysis fitted well with the pseudo-second-order kinetic model. A low-cost, simple device was made from a stainless-steel wire mesh with mesoporous ceramic pellets enclosed in it, which can easily be dipped and taken out of an aquarium and can remove methylene blue from water.


2018 ◽  
Vol 877 ◽  
pp. 13-19
Author(s):  
Bhargavi Gunturu ◽  
Geethalakshmi Ramakrishnan ◽  
Renganathan Sahadevan

In the present study, the efficiency of biosorbent derived form Pongamiapinata to remove a basic textile dye Methylene Blue from an aqueous solution was evaluated in batch system. The influence of adsorption parameters such as biosorbent dosage (0.2-1.0g/L), PH (2-10) and initial dye concentration (30-110 mg/L) on the biosorption process was studied. It was noticed that adsorbent dosage has negative effect on dye uptake, could be due to reduced mass transfer rate of dye on to adsorbent. High equilibrium uptake was observed at PH 8. However, initial dye concentration has shown linear relationship with dye uptake. As the dye concentration increases, the number of dye molecules available to be adsorbed on to adsorbent surface increases. Equilibrium isotherms for the adsorption of methylene blue was analyzed through Langmuir and Freundlich isotherm models. The data best fit with Freundlich model than Langmuir isotherm model, suggesting the adsorption was by multilayer mechanism. Maximum adsorption capacity (Q ̊) was found to be 40.49mg/g. It can be concluded from the study that the adsorbent derived from P.pinnata can be a potential low cost competent of activated carbon for textile dyes removal.


2018 ◽  
Vol 877 ◽  
pp. 26-32
Author(s):  
Bhargavi Gunturu ◽  
Geethalakshmi Ramakrishnan ◽  
Renganathan Sahadevan

Removal of a basic textile dye Methylene Blue from an aqueous solution was evaluated using biosorbent derived from Kigelia africana in a batch system. The influence of adsorption parameters such as adsorbent dosage (0.10-0.50g), PH (2-12) and initial dye concentration (0.3 to 0.11 g/L) on the adsorption process was studied. It was noticed that with increase in adsorbent dosage, the uptake capacity was decreased. Dye uptake was increased by changing the PH up to 8, further increase in PH caused reduced uptake. It was observed that, dye uptake by the adsorbent increased linearly with that of initial dye concentration. Equilibrium isotherm for the adsorption of methylene blue on to adsorbent was studied through Langmuir and Freundlich isotherm models. The data best fit with Freundlich model. Maximum adsorption capacity (Q ̊) was found to be 119.05mg/g. SEM and FTIR analyses of the adsorbent was performed before and after the adsorption, suggest that adsorption of the dye was through chemical interaction of the functional groups on the surface of the adsorbent. From the experimental results, it was inferred that biosorbent derived from Kigelia africana can be a potential alternate to activated carbon for textile dyes removal.


2015 ◽  
Vol 76 (13) ◽  
Author(s):  
Ahmed Salisu ◽  
Mohd Marsin Sanagi ◽  
Khairil Juhanni Abd Karim ◽  
Neda Pourmand ◽  
Wan Aini Wan Ibrahim

In this study, the removal of methylene blue (MB) dye using alginate-graft-poly (methyl methacrylate) beads was investigated. The effects of adsorption parameters namely initial pH and initial dye concentration were studied. The removal efficiency of the beads has been found to be dependent on initial dye concentration and initial pH. The experimental equilibrium data was fitted successfully to Langmuir isotherm model with the maximum monolayer coverage of 5.25 mg g−1 and adsorption kinetics data has been well fitted by a pseudo-second-order kinetic model. The alginate based beads could be used as low-cost and eco-friendly adsorbent for removal of trace amount of methylene blue from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document