Astragalin flavonoid inhibits proliferation in human lung carcinoma cells mediated via induction of caspase-dependent intrinsic pathway, ROS production, cell migration and invasion inhibition and targeting JAK/STAT signalling pathway

2021 ◽  
Vol 67 (2) ◽  
pp. 44-49
Author(s):  
Guoxing Xu ◽  
Biqing Yu ◽  
Rujuan Wang ◽  
Jie Jiang ◽  
Fangjing Wen ◽  
...  

The aim of the current study was to investigate the anti-lung cancer effects of astragalin. Studies were also undertaken to evaluate its effects on apoptosis induction, ROS production, cellular migration and invasion and JAK/STAT3 signalling pathway. MTT assay was used to evaluate cell viability in NSCLC A549 cells after exposure to astragalin molecule. Apoptosis was investigated using AO/EB staining, comet assay and western blotting assay. Fluorescence microscopy was implemented to estimate ROS production. Cell migration and invasion were measured using transwell chambers assay. Effects of astragalin on JAK/STAT pathway were investigated using western blotting assay. Results showed astragalin molecule induced inhibition of proliferation in A549 cells in a dose-dependent fashion. Further, the antiproliferative effects were found to mediate via apoptosis as suggested by AO/EB staining and western blotting assay. Astragalin modulated the expressions of caspase-3, caspase-9, Bax, Bak, Cyt-c Bcl-2, XIAP and Bcl-xL. Astragalin induced DNA damage in A549 cells which too indicated apoptotic cell death. Astragalin molecule enhanced the production of ROS by A549 cells. It inhibited both cell migration and invasion of A549 cells in a concentration-dependent manner. Finally, astragalin drug was observed with remarkable potential of targeting JAK/STAT pathway in A549 NSCLC cells. These results indicated that astragalin drug could prove helpful in lung cancer treatment and research provided more in-vivo studies are performed.

2021 ◽  
Vol 11 ◽  
Author(s):  
Jingzhou Jia ◽  
Jiwei Sun ◽  
Wenbo Wang ◽  
Hongmei Yong

Long noncoding RNAs act essential regulators in lung cancer tumorigenesis. Our research aimed to investigate the potential function and molecular mechanisms of MLK7-AS1 in NSCLC (non-small-cell lung cancer). QRT-PCR results indicated that the MLK7-AS1 expression level was upregulated in NSCLC cells and tissues. MLK7-AS1 strengthened cell migration and invasion in H1299 and A549 cells. Luciferase reporter assay found that MLK7-AS1 functioned as an endogenous sponge for miR-375-3p. Transwell assay results showed that miR-375-3p suppressed cell migration and invasion in H1299 and A549 cells. YWHAZ was confirmed as a target gene of miR-375-3p by Targetscan. YWHAZ overexpression promoted the invasion of H1299 and A549 cells. MLK7-AS1 upregulated YWHAZ expression and enhanced H1299 and A549 cell invasion by sponging miR-375-3p. MLK7-AS1 improved the metastasis ability of A549 in vivo. In conclusion, MLK7-AS1 was identified as a novel oncogenic RNA in NSCLC and can function as a potential therapeutic target for NSCLC treatment.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 638
Author(s):  
Kittipong Sanookpan ◽  
Nongyao Nonpanya ◽  
Boonchoo Sritularak ◽  
Pithi Chanvorachote

Cancer metastasis is the major cause of about 90% of cancer deaths. As epithelial-to-mesenchymal transition (EMT) is known for potentiating metastasis, this study aimed to elucidate the effect of ovalitenone on the suppression of EMT and metastasis-related behaviors, including cell movement and growth under detached conditions, and cancer stem cells (CSCs), of lung cancer cells. Methods: Cell viability and cell proliferation were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazo-liumbromide (MTT) and colony formation assays. Cell migration and invasion were analyzed using a wound-healing assay and Boyden chamber assay, respectively. Anchorage-independent cell growth was determined. Cell protrusions (filopodia) were detected by phalloidin-rhodamine staining. Cancer stem cell phenotypes were assessed by spheroid formation. The proteins involved in cell migration and EMT were evaluated by Western blot analysis and immunofluorescence staining. Results: Ovalitenone was used at concentrations of 0–200 μM. While it caused no cytotoxic effects on lung cancer H460 and A549 cells, ovalitenone significantly suppressed anchorage-independent growth, CSC-like phenotypes, colony formation, and the ability of the cancer to migrate and invade cells. The anti-migration activity was confirmed by the reduction of filopodia in the cells treated with ovalitenone. Interestingly, we found that ovalitenone could significantly decrease the levels of N-cadherin, snail, and slug, while it increased E-cadherin, indicating EMT suppression. Additionally, the regulatory signaling of focal adhesion kinase (FAK), ATP-dependent tyrosine kinase (AKT), the mammalian target of rapamycin (mTOR), and cell division cycle 42 (Cdc42) was suppressed by ovalitenone. Conclusions: The results suggest that ovalitenone suppresses EMT via suppression of the AKT/mTOR signaling pathway. In addition, ovalitenone exhibited potential for the suppression of CSC phenotypes. These data reveal the anti-metastasis potential of the compound and support the development of ovalitenone treatment for lung cancer therapy.


2018 ◽  
Vol 45 (3) ◽  
pp. 984-992 ◽  
Author(s):  
Lv Yao ◽  
Xiaoqiang Guo ◽  
Yaoting Gui

Background/Aims: Reprogramming energy metabolism is an emerging hallmark of many cancers, and this alteration is especially evident in renal cell carcinomas (RCCs). However, few studies have been conducted on lipid metabolism. This study investigated the function and mechanism of lipid metabolism-related acetyl-CoA synthetase 2 (ACSS2) in RCC development, cell migration and invasion. Methods: Quantitative real-time PCR (qRT-PCR) was used to determine the expression of ACSS2 in cancer tissue and adjacent tissue. The inhibition of ACSS2 expression was achieved by RNA interference, which was confirmed by qRT-PCR and Western blotting. Cell proliferation and apoptosis were detected by a CCK8 assay and a flow cytometry analysis, respectively. Cell migration and invasion were determined by the scratch and transwell assays. Following the knockdown of ACSS2 expression, the expression of the autophagy-related factor LAMP1 was measured by qRT-PCR and Western blotting. Results: Compared to adjacent tissues, ACSS2 expression was upregulated in RCC cancer tissues and positively correlated with metastasis. Inhibition of ACSS2 had no effect on RCC cell proliferation or apoptosis. However, decreased ACSS2 expression was found to inhibit RCC cell migration and invasion. ACSS2 was determined to promote the expression of LAMP1, which can also promote cell migration. This pathway may be considered a potential mechanism through which ACSS2 participates in RCC development. Conclusion: These data suggest that ACSS2 is an important factor for promoting RCC development and is essential for cell migration and invasion, which it promotes by increasing the expression of LAMP1. Taken together, these findings reveal a potential target for the diagnosis and treatment of RCC.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1142 ◽  
Author(s):  
Mi-Jeong Kim ◽  
Yoon Min ◽  
Ji Seon Im ◽  
Juhee Son ◽  
Joo Sang Lee ◽  
...  

Toll-like receptors (TLRs) induce the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and autophagy through the TNF (Tumor necrosis factor) receptor-associated factor 6 (TRAF6)-evolutionarily conserved signaling intermediate in Toll pathways (ECSIT) and TRAF6-BECN1 signaling axes, respectively. Having shown that p62 negatively regulates Toll-like receptor 4 (TLR4)-mediated signaling via TRAF6-ECSIT signaling axis, we herein investigated whether p62 is functionally implicated in the TRAF6-BECN1 signaling axis, thereby regulating cancer cell migration and invasion. p62 interacted with TRAF6 and BECN1, to interrupt the functional associations required for TRAF6-BECN1 complex formation, leading to inhibitions of BECN1 ubiquitination and autophagy activation. Importantly, p62-deficient cancer cells, such as p62-knockdown (p62KD) SK-HEP-1, p62KD MDA-MB-231, and p62-knockout (p62KO) A549 cells, showed increased activation of autophagy induced by TLR4 stimulation, suggesting that p62 negatively regulates autophagy activation. Moreover, these p62-deficient cancer cells exhibited marked increases in cell migration and invasion in response to TLR4 stimulation. Collectively, these results suggest that p62 is negatively implicated in the TRAF6-BECN1 signaling axis, thereby inhibiting cancer cell migration and invasion regulated by autophagy activation in response to TLR4 stimulation.


2017 ◽  
Vol 357 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Yang Zhou ◽  
Bo Wu ◽  
Jiang-Hua Li ◽  
Gang Nan ◽  
Jian-Li Jiang ◽  
...  

2010 ◽  
Vol 285 (50) ◽  
pp. 38832-38840 ◽  
Author(s):  
Sudjit Luanpitpong ◽  
Siera Jo Talbott ◽  
Yon Rojanasakul ◽  
Ubonthip Nimmannit ◽  
Varisa Pongrakhananon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document