scholarly journals Chronic High Fat Diet Consumption Impairs Metabolic Health of Male Mice

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anandini Swaminathan ◽  
Andrej Fokin ◽  
Tomas Venckūnas ◽  
Hans Degens

AbstractMethionine restriction (MR) has been shown to reduce the age-induced inflammation. We examined the effect of MR (0.17% methionine, 10% kCal fat) and MR + high fat diet (HFD) (0.17% methionine, 45% kCal fat) on body mass, food intake, glucose tolerance, resting energy expenditure, hind limb muscle mass, denervation-induced atrophy and overload-induced hypertrophy in young and old mice. In old mice, MR and MR + HFD induced a decrease in body mass. Muscle mass per body mass was lower in old compared to young mice. MR restored some of the HFD-induced reduction in muscle oxidative capacity. The denervation-induced atrophy of the m. gastrocnemius was larger in animals on MR than on a control diet, irrespective of age. Old mice on MR had larger hypertrophy of m. plantaris. Irrespective of age, MR and MR + HFD had better glucose tolerance compared to the other groups. Young and old mice on MR + HFD had a higher resting VO2 per body mass than HFD group. Mice on MR and MR + HFD had a resting respiratory quotient closer to 0.70, irrespective of age, indicating an increased utilization of lipids. In conclusion, MR in combination with resistance training may improve skeletal muscle and metabolic health in old age even in the face of obesity.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ziyi Zhang ◽  
Xiaoyu Chen ◽  
Yuh Jiun Loh ◽  
Xin Yang ◽  
Chenhong Zhang

Abstract Background Calorie restriction (CR) and intermittent fasting (IF) can promote metabolic health through a process that is partially mediated by gut microbiota modulation. To compare the effects of CR and IF with different dietary structures on metabolic health and the gut microbiota, we performed an experiment in which mice were subjected to a CR or IF regimen and an additional IF control (IFCtrl) group whose total energy intake was not different from that of the CR group was included. Each regimen was included for normal chow and high-fat diet. Results We showed that in normal-chow mice, the IFCtrl regimen had similar positive effects on glucose and lipid metabolism as the CR regimen, but the IF regimen showed almost no influence compared to the outcomes observed in the ad libitum group. IF also resulted in improvements, but the effects were less marked than those associate with CR and IFCtrl when the mice were fed a high-fat diet. Moreover, CR created a stable and unique gut microbial community, while the gut microbiota shaped by IF exhibited dynamic changes in fasting-refeeding cycles. At the end of each cycle, the gut microbiota of the IFCtrl mice was similar to that of the CR mice, and the gut microbiota of the IF mice was similar to that of the ad libitum group. When the abundance of Lactobacillus murinus OTU2 was high, the corresponding metabolic phenotype was improved regardless of eating pattern and dietary structure, which might be one of the key bacterial groups in the gut microbiota that is positively correlated with metabolic amelioration. Conclusion There are interactions among the amount of food intake, the diet structure, and the fasting time on metabolic health. The structure and composition of gut microbiota modified by dietary regimens might contribute to the beneficial effects on the host metabolism.


Endocrinology ◽  
2013 ◽  
Vol 154 (12) ◽  
pp. 4548-4559 ◽  
Author(s):  
Mayumi Inoue ◽  
Yibin Jiang ◽  
Richard H. Barnes ◽  
Masakuni Tokunaga ◽  
Gabriel Martinez-Santibañez ◽  
...  

Thrombospondin 1 (THBS1 or TSP-1) is a circulating glycoprotein highly expressed in hypertrophic visceral adipose tissues of humans and mice. High-fat diet (HFD) feeding induces the robust increase of circulating THBS1 in the early stages of HFD challenge. The loss of Thbs1 protects male mice from diet-induced weight gain and adipocyte hypertrophy. Hyperinsulinemic euglycemic clamp study has demonstrated that Thbs1-null mice are protected from HFD-induced insulin resistance. Tissue-specific glucose uptake study has revealed that the insulin-sensitive phenotype of Thbs1-null mice is mostly mediated by skeletal muscles. Further assessments of the muscle phenotype using RNA sequencing, quantitative PCR, and histological studies have demonstrated that Thbs1-null skeletal muscles are protected from the HFD-dependent induction of Col3a1 and Col6a1, coupled with a new collagen deposition. At the same time, the Thbs1-null mice display a better circadian rhythm and higher amplitude of energy expenditure with a browning phenotype in sc adipose tissues. These results suggest that THBS1, which circulates in response to a HFD, may induce insulin resistance and fibrotic tissue damage in skeletal muscles as well as the de-browning of sc adipose tissues in the early stages of a HFD challenge. Our study may shed new light on the pathogenic role played by a circulating extracellular matrix protein in the cross talk between adipose tissues and skeletal muscles during obesity progression.


Author(s):  
Sik Yu So ◽  
Qinglong Wu ◽  
Kin Sum Leung ◽  
Zuzanna Maria Kundi ◽  
Tor C Savidge ◽  
...  

Emerging evidence links dietary fiber with altered gut microbiota composition and bile acid signaling in maintaining metabolic health. Yeast β-glucan (Y-BG) is a dietary supplement known for its immunomodulatory effect, yet its impact on the gut microbiota and bile acid composition remains unclear. This study investigated whether dietary forms of Y-BG modulate these gut-derived signals. We performed 4-week dietary supplementation in healthy mice to evaluate effects of different fiber composition (soluble vs particulate Y-BG) and dose (0.1 vs. 2%). We found that 2% particulate Y-BG induced robust gut microbiota community shifts with elevated liver Cyp7a1 mRNA abundance and bile acid synthesis. These diet-induced responses were notably different when compared to the prebiotic inulin, and included a marked reduction in fecal Bilophila abundance which we demonstrated as translatable to obesity in population-scale American Gut and TwinsUK clinical cohorts. This prompted us to test whether 2% Y-BG maintained metabolic health in mice fed 60% HFD over 13 weeks. Y-BG consistently altered the gut microbiota composition and reduced Bilophila abundance, with trends observed in improvement of metabolic phenotype. Notably, Y-BG improved insulin sensitization and this was associated with enhanced ileal Glpr1r mRNA accumulation and reduced Bilophila abundance. Collectively, our results demonstrate that Y-BG modulates gut microbiota community composition and bile acid signaling, but the dietary regime needs to be optimized to facilitate clinical improvement in metabolic phenotype in an aggressive high-fat diet animal model.


2021 ◽  
Author(s):  
nannan liu ◽  
Xuefeng Chen ◽  
Juanna Song ◽  
Mengyin Chen ◽  
Pin Gong ◽  
...  

This study evaluated the hypoglycemic effect of Auricularia auricula polysaccharides (AAPs) on streptozotocin-induced type 2 diabetes mellitus (T2DM) male mice (C57BL/6J) using a metabolomic approach based on ultrahigh-performance liquid chromatography–Q...


2018 ◽  
Vol 16 ◽  
pp. 205873921876094 ◽  
Author(s):  
Gang Yu ◽  
Lili Zhu ◽  
Haiyan Li ◽  
Youyou Shao ◽  
Lei Chong ◽  
...  

Overweight/obesity has been suggested as a risk factor for asthma development, and prospective studies have confirmed that high body weight precedes asthma symptoms. However, the nature of the association between overweight/obese status and asthma remains unclear. Animal models of obesity-related asthma are very useful for understanding disease pathophysiology. Although C57/B6J mice are the most widely used animal model for researching obesity-related asthma, gender differences are not always taken into consideration. Therefore, to explore the effect of gender on the development of obesity-related asthma, both female and male C57/B6J mice were used in this study. The mice were fed with a high-fat diet or a low-fat diet as control. Body weight, body length, liver weight, and Lee’s Index were used to evaluate obesity status, and lung histology, lung inflammatory cells infiltration, and inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were examined for asthma evaluation. We found that the mean body weight of male mice on a high-fat diet gradually increased and was significantly higher than control male mice on a low-fat diet ( P < 0.01), while no significant differences were found between female mice at the end of 12 weeks of feeding. Furthermore, the obese asthma group female and male mice exhibited significantly high inflammatory cells infiltration than normal weight or obese female and male mice ( P < 0.01). However, the obese asthma group presented higher Neu infiltration, Th1 cytokine, and interferon gamma (IFNγ) concentrations in BALF than the asthma group in both the genders ( P < 0.01). In conclusion, both female and male mice are suitable for the obesity-related asthma model, although male mice might be more stable. Besides, obesity-related asthma is not Th2 type asthma.


2017 ◽  
Vol 42 (11) ◽  
pp. 1158-1164 ◽  
Author(s):  
Caryn Zinn ◽  
Julia McPhee ◽  
Nigel Harris ◽  
Micalla Williden ◽  
Kate Prendergast ◽  
...  

Overweight, obesity, and poor health is becoming a global concern for defence force personnel. Conventional nutrition guidelines are being questioned for their efficacy in achieving optimal body composition and long-term health. This study compared the effects of a 12-week low-carbohydrate, high-fat diet with a conventional, high-carbohydrate, low-fat diet on weight reduction and metabolic health outcomes in at-risk New Zealand Defence Force personnel. In this randomised controlled trial, 41 overweight personnel were assigned to intervention and control groups. Weight, waist circumference, fasting lipids, and glycaemic control were assessed at baseline and at 12 weeks. Within-group change scores were analysed using the t statistic and interpreted using a p < 0.05 level of statistical significance. Between-group mean differences and confidence intervals were analysed using effect sizes and magnitude-based inferences. Twenty-six participants completed the trial (14 intervention, 12 control). Both groups showed statistically significant weight and waist circumference reductions; the intervention group significantly reduced triglycerides and serum glucose and significantly increased high-density lipoprotein cholesterol (HDLc). Relative to control, the intervention group showed small, possibly to likely beneficial effects for weight, triglycerides, glucose, insulin, and homeostasis model assessment of insulin resistance; moderate, likely beneficial effects for HDL cholesterol, triglyceride:HDLc ratio and HbA1c; and a small, likely harmful effect for low-density lipoprotein cholesterol. This dietary approach shows promise for short-term weight loss and improved metabolic health outcomes conditions compared with mainstream recommendations. It should be offered to defence force personnel at least as a viable alternative means to manage their weight and health.


Endocrinology ◽  
2010 ◽  
Vol 151 (11) ◽  
pp. 5428-5437 ◽  
Author(s):  
Johan Bourghardt ◽  
Anna S. K. Wilhelmson ◽  
Camilla Alexanderson ◽  
Karel De Gendt ◽  
Guido Verhoeven ◽  
...  

The atheroprotective effect of testosterone is thought to require aromatization of testosterone to estradiol, but no study has adequately addressed the role of the androgen receptor (AR), the major pathway for the physiological effects of testosterone. We used AR knockout (ARKO) mice on apolipoprotein E-deficient background to study the role of the AR in testosterone atheroprotection in male mice. Because ARKO mice are testosterone deficient, we sham operated or orchiectomized (Orx) the mice before puberty, and Orx mice were supplemented with placebo or a physiological testosterone dose. From 8 to 16 wk of age, the mice consumed a high-fat diet. In the aortic root, ARKO mice showed increased atherosclerotic lesion area (+80%, P &lt; 0.05). Compared with placebo, testosterone reduced lesion area both in Orx wild-type (WT) mice (by 50%, P &lt; 0.001) and ARKO mice (by 24%, P &lt; 0.05). However, lesion area was larger in testosterone-supplemented ARKO compared with testosterone-supplemented WT mice (+57%, P &lt; 0.05). In WT mice, testosterone reduced the presence of a necrotic core in the plaque (80% among placebo-treated vs. 12% among testosterone-treated mice; P &lt; 0.05), whereas there was no significant effect in ARKO mice (P = 0.20). In conclusion, ARKO mice on apolipoprotein E-deficient background display accelerated atherosclerosis. Testosterone treatment reduced atherosclerosis in both WT and ARKO mice. However, the effect on lesion area and complexity was more pronounced in WT than in ARKO mice, and lesion area was larger in ARKO mice even after testosterone supplementation. These results are consistent with an AR-dependent as well as an AR-independent component of testosterone atheroprotection in male mice.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3187
Author(s):  
Eunkuk Park ◽  
Chang-Gun Lee ◽  
Hyoju Jeon ◽  
Hyesoo Jeong ◽  
Subin Yeo ◽  
...  

Medicinal plants are widely used as supplements for the treatment of various diseases because of their few side-effects. Here, we examined the anti-obesity effects of a mixture extract of Cornus officinalis and Ribes fasciculatum (CR) in high-fat diet (HFD)-induced obese male mice. Four week old male C57BL/6J mice were fed a normal diet (ND) or 60% high-fat diet (HFD) with different concentrations of CR extracts (75, 150, and 300 mg/kg/day) by oral administration for 12 weeks. CR extract administration prevented HFD-induced weight gain, hepatic steatosis, and adipocyte enlargement through the downregulation of adipogenesis-associated genes in obese male mice. In addition, CR administration improved the impaired glucose metabolism, insulin action, biochemical obesity parameters, and metabolic profiles in HFD-induced male mice. Consequently, the CR extract exhibited beneficial effects on HFD-induced systemic metabolic challenges. Taken together, our findings suggest that CR extract may be a potent therapeutic supplement for the treatment and prevention of obesity.


2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Misung Kim ◽  
Woori Na ◽  
Hanlla Kim ◽  
Eunhye Park ◽  
Hyun-A Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document