Facile Preparation of P-25 Films Dip-Coated Nickel Foam and High Photocatalytic Activity for the Degradation of Quinoline and Industrial Wastewater

Author(s):  
Suiyi Zhu ◽  
Xia Yang ◽  
Gu-Ning Wang ◽  
Lei-Lei Zhang ◽  
He-Feng Zhu ◽  
...  

A kind of P-25 TiO2 films coated nickel foam was synthesized by a facile dip-coating/calcination route, and used to fabricate a continuous-flow three-phase photocatalytic reactor. The morphology, crystal phase structure, surface composition and specific surface area of P-25 films coated nickel foam were investigated by field emission scanning electron microscope (FE-SEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption-desorption measurements, respectively. The results indicated that the coated/ calcined P-25 films had the porous surface structure fabricated by nano-sized titanium dioxide consisted of two crystal phases and incorporated with a NiO interlayer. The increase of P-25 contents enhanced the specific surface area; however, 20 percent of initial P-25 sol would result in visible large cracks because of too high P-25 content and consequently cause the peeling of films. The photocatalytic activities of nickel foam with different coating amounts of P-25 for the degradation of quinoline aqueous solutions were investigated with a continuous-flow three-phase photocatalytic reactor based on the P-25 films coated nickel foam. The results suggested that nickel foam coated with 10 percent of P-25 sol had an optimal photocatalytic activity for the degradation of quinoline aqueous solutions. The continuous-flow three-phase photocatalytic reactor fabricated with P-25 films coated nickel foam with an optimal P-25 coating amount shows high photocatalytic activity and stability for the degradation of quinoline aqueous solutions and industrial wastewater. The treated industrial wastewater meets the international discharge standard.

2010 ◽  
Vol 4 (2) ◽  
pp. 69-73 ◽  
Author(s):  
Marija Milanovic ◽  
Ivan Stijepovic ◽  
Ljubica Nikolic

Titanate structures were synthesized in highly alkaline solution using hydrothermal procedure. As-prepared powders were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). A specific surface area of the powders was measured by BET method. Results confirmed formation of layered trititanates, already after one hour of hydrothermal synthesis. To examine the photocatalytic activity of the as-prepared layered titanates, methylene blue (MB) was employed as a target compound in response to visible light at ambient temperature. It was observed that the specific surface area, size distribution and crystallinity are important factors to get high photocatalytic activity for the decomposition of MB. .


2014 ◽  
Vol 685 ◽  
pp. 123-126
Author(s):  
Yan Lu

In this paper, α-Fe2O3 photocatalyst with high photocatalytic activity (IL-α-Fe2O3) was fabricated via hydrothermal routine using 1-ethyl-3- methylimidazolium dihydrophosphate ([EMIm]H2PO4). The specific surface area, structure, the photo-induced charge separation rate were characterized by Brunauer-Emmett-Teller (BET) measurements, X-ray diffraction (XRD), and surface photovoltage spectroscopy (SPS), respectively. The results show that adding ([EMIm]H2PO4 into the synthetic system alters the specific surface parameters and photo-induced charge separation rate. The photocatalytic activity for decolorization of methyl orange (MO) solution was investigated. The results show that the photocatalytic activity of IL-α-Fe2O3 is more than 2.5 times that of the reference α-Fe2O3 and the underlying mechanisms are discussed.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 217
Author(s):  
Marin Ugrina ◽  
Martin Gaberšek ◽  
Aleksandra Daković ◽  
Ivona Nuić

Sulfur-impregnated zeolite has been obtained from the natural zeolite clinoptilolite by chemical modification with Na2S at 150 °C. The purpose of zeolite impregnation was to enhance the sorption of Hg(II) from aqueous solutions. Chemical analysis, acid and basic properties determined by Bohem’s method, chemical behavior at different pHo values, zeta potential, cation-exchange capacity (CEC), specific surface area, X-ray powder diffraction (XRPD), scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), as well as thermogravimetry with derivative thermogravimetry (TG-DTG) were used for detailed comparative mineralogical and physico-chemical characterization of natural and sulfur-impregnated zeolites. Results revealed that the surface of the natural zeolite was successfully impregnated with sulfur species in the form of FeS and CaS. Chemical modification caused an increase in basicity and the net negative surface charge due to an increase in oxygen-containing functional groups as well as a decrease in specific surface area and crystallinity due to the formation of sulfur-containing clusters at the zeolite surface. The sorption of Hg(II) species onto the sulfur-impregnated zeolite was affected by the pH, solid/liquid ratio, initial Hg(II) concentration, and contact time. The optimal sorption conditions were determined as pH 2, a solid/liquid ratio of 10 g/L, and a contact time of 800 min. The maximum obtained sorption capacity of the sulfur-impregnated zeolite toward Hg(II) was 1.02 mmol/g. The sorption mechanism of Hg(II) onto the sulfur-impregnated zeolite involves electrostatic attraction, ion exchange, and surface complexation, accompanied by co-precipitation of Hg(II) in the form of HgS. It was found that sulfur-impregnation enhanced the sorption of Hg(II) by 3.6 times compared to the natural zeolite. The leaching test indicated the retention of Hg(II) in the zeolite structure over a wide pH range, making this sulfur-impregnated sorbent a promising material for the remediation of a mercury-polluted environment.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
N. Cruz-González ◽  
O. Calzadilla ◽  
J. Roque ◽  
F. Chalé-Lara ◽  
J. K. Olarte ◽  
...  

In the last decade, the urgent need to environmental protection has promoted the development of new materials with potential applications to remediate air and polluted water. In this work, the effect of the TiO2 thin layer over MoS2 material in photocatalytic activity is reported. We prepared different heterostructures, using a combination of electrospinning, solvothermal, and spin-coating techniques. The properties of the samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRS), and X-ray photoelectron spectroscopy (XPS). The adsorption and photocatalytic activity were evaluated by discoloration of rhodamine B solution. The TiO2-MoS2/TiO2 heterostructure presented three optical absorption edges at 1.3 eV, 2.28 eV, and 3.23 eV. The high adsorption capacity of MoS2 was eliminated with the addition of TiO2 thin film. The samples show high photocatalytic activity in the visible-IR light spectrum.


Author(s):  
Nurul Sahida Hassan ◽  
Nurul Jamilah Roslani ◽  
Aishah Abdul Jalil ◽  
Sugeng Triwahyono ◽  
Nur Fatien Salleh ◽  
...  

In recent years, dyes are one of the major sources of the water contamination that lead to environmental problems. For instance, Rhodamine B (RhB) which was extensively used as a colorant in textile industries is toxic and carcinogenic. Among many techniques, photocatalytic degradation become the promising one to remove those dyes from industrial wastewater. Recently, graphene has shown outstanding performance in this application due to its intrinsic electron delocalisation which promotes electron transport between composite photocatalyst and pollutant molecules. While, copper oxide (CuO) is well-known has a lower bandgap energies compared to other semiconductors. Therefore, in this study, copper oxide supported on graphene (CuO/G) was prepared and its photocatalytic activity was tested on degradation of RhB. The catalysts were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy. The results showed that the interaction between copper and graphene support could enhance the photocatalytic activity. The 5 wt% CuO/G was found to give the highest degradation (95%) of 10 mg L-1 of RhB solution at pH 7 using 1 g L-1 catalyst after 4 hours under visible light irradiation. The photodegradation followed the pseudo first-order Langmuir-Hinshelwood kinetic model. This study demonstrated that the CuO/G has a potential to be used in photocatalytic degradation of various organic pollutants.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2763
Author(s):  
Zuzanna Bielan ◽  
Szymon Dudziak ◽  
Agnieszka Sulowska ◽  
Daniel Pelczarski ◽  
Jacek Ryl ◽  
...  

Among various methods of improving visible light activity of titanium(IV) oxide, the formation of defects and vacancies (both oxygen and titanium) in the crystal structure of TiO2 is an easy and relatively cheap alternative to improve the photocatalytic activity. In the presented work, visible light active defective TiO2 was obtained by the hydrothermal reaction in the presence of three different oxidizing agents: HIO3, H2O2, and HNO3. Further study on the effect of used oxidant and calcination temperature on the physicochemical and photocatalytic properties of defective TiO2 was performed. Obtained nanostructures were characterized by X-ray diffractometry (XRD), specific surface area (BET) measurements, UV-Vis diffuse reflectance spectroscopy (DR-UV/Vis), photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) spectroscopy. Degradation of phenol as a model pollutant was measured in the range of UV-Vis and Vis irradiation, demonstrating a significant increase of photocatalytic activity of defective TiO2 samples above 420 nm, comparing to non-defected TiO2. Correlation of EPR, UV-Vis, PL, and photodegradation results revealed that the optimum concentration of HIO3 to achieve high photocatalytic activity was in the range of 20–50 mol%. Above that dosage, titanium vacancies amount is too high, and the obtained materials’ photoactivity was significantly decreased. Studies on the photocatalytic mechanism using defective TiO2 have also shown that •O2− radical is mainly responsible for pollutant degradation.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Yinzhen Wang ◽  
Ning Li ◽  
Pingping Duan ◽  
Xuwei Sun ◽  
Benli Chu ◽  
...  

β-Ga2O3nanorods are prepared by hydrothermal method and characterized by X-ray diffraction, high-resolution transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and photoluminescence spectra. The results reveal that high crystallinity, monoclinic phase ofβ-Ga2O3nanorods were prepared with a diameter of about 60 nm and length of 500 nm. Photoluminescence study indicates that theβ-Ga2O3nanorods exhibit a broad blue light emission at room temperature. Theβ-Ga2O3nanorods displayed high photocatalytic activity under simulated solar irradiation; after 2 h irradiation, over 95% of methylene blue solution and over 90% of methyl orange solution were decolorized. Since this process does not require additional hydrogen peroxide and uses solar light, it can be developed as an economically feasible and environmentally friendly method to treat dye effluent.


2020 ◽  
Vol 842 ◽  
pp. 214-222
Author(s):  
Chu Wen Rao ◽  
Wei Zhang ◽  
Zheng Fa Hu ◽  
Zu Yong Feng ◽  
Ying Jun Chen ◽  
...  

In this paper, ZnWO4: La3+, Y3+ photocatalysts were synthesized by a high-temperature solid state reaction method. The effects of La3+ and Y3+ doping contents on the phase, morphologies and optical properties of the samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Diffuse reflectance spectra (DRS), photoluminescence spectra (PL), Raman and UV-visible spectroscopy, respectively. The as-prepared ZnWO4:La3+, Y3+ photocatalysts showed photoluminescence with a broad band emission, and high photocatalytic activity in degradation of rhodamine B (RhB) under simulated UV irradiation. The results showed that co-doping in ZnWO4 can enhance light harvesting capability to generate more electron-hole pairs, and acted as a trap center by decreasing the recombination of photogenerated electrons and holes. All the results obtained by the work suggest that ZnWO4: La3+, Y3+ photocatalysts are promising materials for the photocatalytic decomposition of pollutants.


RSC Advances ◽  
2014 ◽  
Vol 4 (90) ◽  
pp. 49280-49286 ◽  
Author(s):  
Lu-Lu Lai ◽  
Li-Liang Huang ◽  
Jin-Ming Wu

Flower-like rutile TiO2 mesocrystals were synthesized by a K2TiO(C2O4)2-mediated low temperature solution route under the atmospheric pressure, which exhibited high photocatalytic activity because of the large specific surface area as well as the high charge separation rate inherent from the single crystal nature.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Pham Van Viet ◽  
Cao Minh Thi ◽  
Le Van Hieu

Tin oxide nanoparticles (SnO2NPs) were prepared at low temperature by hydrothermal method. Synthesized SnO2NPs were confirmedviacharacterization techniques such as UV-visible spectroscopy (UV-vis), X-ray diffraction (XRD), and Transmission Electron Microscope (TEM). The synthesized nanoparticles were in the size of 3 nm and they have high photocatalytic activity. The result showed that SnO2NPs degraded 88.88% MB solution after 30 minutes of UV illumination and reached 90.0% for 120 minutes (2 hours) of UV illumination. Moreover, they degraded 79.26% MB solution after 90 minutes (1.5 hours) under assisted sunlight illumination.


Sign in / Sign up

Export Citation Format

Share Document