scholarly journals Effect of Heat Treatment Parameters on the Toughness of Unalloyed Ausferritic Ductile Iron

2016 ◽  
Vol 16 (2) ◽  
pp. 79-84 ◽  
Author(s):  
E. Guzik ◽  
M. Sokolnicki ◽  
A. Nowak

Abstract Studies were carried out to determine the effect of heat treatment parameters on the plastic properties of unalloyed ausferritic ductile iron, such as the elongation and toughness at ambient temperature and at – 60 °C. The effect of austenitizing temperature (850, 900 and 950°C) and ausferritizing time (5 - 180 min.) at a temperature of 360°C was also discussed. The next step covered investigations of a relationship that is believed to exist between the temperature (270, 300, 330, 360 and 390 °C) and time (5, 10, 30, 60, 90, 120, 150, 180, 240 min.) of the austempering treatment and the mechanical properties of unalloyed ausferritic ductile iron, when the austenitizing temperature is 950°C. The “process window” was calculated for the ADI characterized by high toughness corresponding to the EN-GJS-800-10-RT and EN-GJS-900-8 grades according to EN-PN 1564 and to other high-strength grades included in this standard. Low-alloyed cast iron with the nodular graphite is an excellent starting material for the technological design of all the ausferritic ductile iron grades included in the PN-EN-1624 standard. The examined cast iron is characterized by high mechanical properties stable within the entire range of heat treatment parameters.

2013 ◽  
Vol 13 (1) ◽  
pp. 81-88
Author(s):  
A. Kowalskia ◽  
S. Kluska-Nawarecka ◽  
K. Regulski

Abstract ADI subjected to austenitising at intercritical temperatures contains in its matrix the precipitates of pre-eutectoid ferrite. Studies were carried out on the ductile iron of the following chemical composition: C = 3,80%, Si = 2,30%, Mn = 0,28%, P = 0,060%, S = 0,010%, Mg = 0,065%, Ni = 0,60%, Cu = 0,70%, Mo = 0,21% This cast iron was austenitised at three different temperatures, i.e. 800, 815 and 830oC and austempered at 360 and 380oC. For each variant of the cast iron heat treatment, the mechanical properties, i.e. YS, TS, EL and Hardness, were measured, and structure of the matrix was examined. Higher plastic properties were obtained owing to the presence of certain amount of pre-eutectoid ferrite. The properties were visualised using fuzzy logic model in a MATLAB. software.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 566-574
Author(s):  
Yu Zhang ◽  
Erjun Guo ◽  
Liping Wang ◽  
Yicheng Feng ◽  
Sicong Zhao ◽  
...  

Abstract With the continuous development of metal manufacturing technology, high-strength and high-hardness ductile iron materials have excellent comprehensive performance. Many performance indexes are comparable to those of alloy steels, and they have excellent casting properties. Many large-scale parts produced by cast steel are slowly being replaced by this material. Ductile iron is obtained by a spheroidizing treatment and inoculation to obtain spheroidal graphite. The mechanical properties of cast iron have been effectively improved, especially plasticity and toughness, and the strength obtained is higher than that of carbon steel. Ductile iron has the properties of iron and the properties of steel. It is a new type of engineering material with high plasticity, strength, corrosion resistance, and wear-resistance. Because of its excellent performance, it has been successfully used to cast parts with high-stress conditions, high strength, toughness and wear resistance. Due to the small splitting effect of ductile iron on the metal matrix, the stress concentration is effectively eliminated. Therefore, the matrix structure of ductile cast iron is changed by heat treatment, thereby improving its mechanical properties and the damping performance of the material itself. Through a heat treatment process experiment of ductile iron, the related process and technical measures of damping performance in the heat treatment production process are obtained.


2010 ◽  
Vol 139-141 ◽  
pp. 235-238
Author(s):  
De Qiang Wei

In this paper, the low alloy bainite ductile cast iron has been obtained by a new heat treatment technique of the step austempering in room-temperature machine oil. The effects of element boron, manganese and copper on structure and mechanical properties of the bainite ductile cast Iron in above-mentioned process are investigated. The phenomenon, hardness lag of the alloyed bainite ductile cast Iron, has been discussed. It shows that after the step austempering in room-temperature machine oil, the hardness will increases with the time. It is found that boron and manganese can increase the hardness and reduce the impact strength while copper can increase the impact strength. The results show that reasonable alloyed elements can improve mechanical properties of the bainite ductile cast Iron. Essentially, hardness lag of the alloyed bainite ductile cast Iron is resulted from solute drag-like effect.


2016 ◽  
Vol 61 (4) ◽  
pp. 2159-2164 ◽  
Author(s):  
E. Guzik ◽  
M. Sokolnicki ◽  
M. Królikowski ◽  
M. Ronduda ◽  
A. Nowak

Abstract Tests were carried out on samples of low-alloy ductile iron with additions of Ni, Cu and Mo, subjected to austempering heat treatment. The samples were austenitized at 850, 900 and 950 °C, and then austempered at T = 210, 240, 270, 300 and 330 °C. The ausferritizing treatment was carried out in a salt bath for the time τ = 2 - 8 hours. Additionally, tests and studies covered samples subjected to the ausferritizing treatment at 270 °C with the time of holding castings in a bath from 2 to 24 hours. Evaluation covered the results of the ADI microstructure examinations and hardness measurements. The ADI matrix morphology was identified counting the average number of ausferrite plates and measuring their width and spacing. The regression equations HB = f (τ, T) and τ = f (HB, T) were derived to establish the, so-called, “process window”, allowing obtaining a priori the required microstructure of ADI and, consequently, the required mechanical properties, mainly hardness, shaping the functional properties of castings, abrasion wear resistance – in particular.


2018 ◽  
Vol 925 ◽  
pp. 203-209 ◽  
Author(s):  
Vinicius Cardilo Campos Alves ◽  
Luciano Lobo de Almeida Baracho ◽  
Césio Túlio Alves dos Santos ◽  
Luiz Carlos Rolim Lopes ◽  
Éder dos Reis Silva ◽  
...  

Austempered ductile cast irons (ADI) have received great attention in last years because their combined properties of good ductility, high strength and fracture toughness, good fatigue strength, good wear properties and low production cost. Such combination of properties can be reached because of their microstructures consist of a mixture acicular ferrite (bainite), residual austenite with a high carbon content and nodular graphite. In this work, the effect of austempering heat treatment on the microstructure of a commercial alloy to produce three different grades of ADI, with different strength level, is analyzed. Microstructure characterization has been performed using techniques of optical microscopy, scanning electron microscopy and x-ray diffraction. Mechanical properties were evaluated from tensile and impact tests at room temperature. In addition, the residual stress due to heat treatment was evaluated. The results of this study show that there is a strong relationship between austempering temperatures and mechanical properties. The highest tensile and yield strength obtained were 1599 and 1427 MPa, respectively, for the sample austempered at 280°C. The sample austempered at 320°C presented the highest Charpy absorption energy (99,90 J) and highest volume fraction of austenite (27%).


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 768
Author(s):  
Moonseok Kang ◽  
Minha Park ◽  
Byoungkoo Kim ◽  
Hyoung Chan Kim ◽  
Jong Bae Jeon ◽  
...  

High-strength steel is widely used in hot forging products for application to the oil and gas industry because it has good mechanical properties under severe environment. In order to apply to the extreme environment industry requiring high temperature and high pressure, heat treatments such as austenitizing, quenching and tempering are required. The microstructure of high-strength steel after heat treatment has various microstructures such as Granular Bainite (GB), Acicular Ferrite (AF), Bainitic Ferrite (BF), and Martensite (M) depending on the heat treatment conditions and cooling rate. Especially in large forged products, the difference in microstructure occurs due to the difference in the forging ratio depending on the location and the temperature gradient according to the thickness during post-heat treatment. Therefore, this study attempted to quantitatively analyze various phases of F70 high-strength steel according to the austenitizing temperature and hot forging ratio using the existing EBSD analysis method. In addition, the correlation between microstructure and mechanical properties was investigated through various phase analysis and fracture behavior of high-strength steel. We found that various microstructures of strength steel depend on the austenitizing temperature and hot forging ratio, and influence the mechanical properties and fracture behavior.


2010 ◽  
Vol 638-642 ◽  
pp. 3394-3399 ◽  
Author(s):  
Leopold Meier ◽  
Peter Schaaf ◽  
S. Cusenza ◽  
D. Höche ◽  
Menachem Bamberger ◽  
...  

Austempered ductile iron (ADI) is a very attractive material for applications where high strength, good ductility, wear resistance and fatigue strength are required. Thus, it offers design engineers an alternative to steel and aluminium alloys. ADI essentially is a cast ductile iron that undergoes a specially designed austempering heat treatment, which creates a microstructure of high carbon austenite and bainitic ferrite along with graphite nodules. The final proportion of these phases (and thus the mechanical properties) depends on the phase transformation kinetics which is strongly affected by composition, as-cast microstructure and heat treatment parameters (austempering). ADI samples were austempered (heat treated) and the phase transitions were analysed after interrupted austempering. The phase fractions (austenite, ferrite, martensite, etc.) and their relation to bulk properties, like electrical resistivity, magnetic properties and mechanical properties (e.g. strength, hardness), and others were measured using optical and electron microscopy, X-ray and neutron diffraction, Mössbauer spectroscopy, and micro hardness measure¬ment. This combination of complementary techniques allows the correlation of the phase transition kinetics with the resulting properties.


2018 ◽  
Vol 15 (29) ◽  
pp. 64-74
Author(s):  
A. R. M. SCHIFINO ◽  
F. R. SANTANNA ◽  
A. P. TRINDADE

The objective of this work was to develop heat treatment parameters of an austempered cast iron alloy ASTM 897 / A 897M - 1400/1100/1, aiming at the production of a truck spring support. The austempered nodular cast iron, known by the acronym ADI - Austempered Ductile Iron - is a class of nodular cast iron that, after austempered thermal treatment, increases significantly its mechanical properties and tenacity (Machado, 2007). Mechanical and metallographic tests demonstrated the great influence that the level of microshrinkage has on the elongation and mechanical resistance of the material. Generally, tensile tests demonstrate high elongation due to minimal presence of microshrinkage and segregations in the metallic matrix of the material, as well as to the presence of austenite with high carbon retained in the ADI matrix. Analyzes were performed to determine if the mechanical properties required by ASTM 897 / A897M were achieved. Within this standard, four degrees can be obtained. The degree of interest in this study was 1400/1100/1, which is the grade requested by the company, so that the truck spring support can be put into service. Tensile, Charpy and optical microscopy tests were carried out.


Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


Sign in / Sign up

Export Citation Format

Share Document